Imaging flow cytometry analysis of intracellular pathogens

dc.contributor.authorHaridas, Viraga
dc.contributor.authorRanjbar, Shahin
dc.contributor.authorVorobjev, Ivan A.
dc.contributor.authorGoldfeld, Anne E.
dc.contributor.authorBarteneva, Natasha S.
dc.creatorViraga, Haridas
dc.date.accessioned2017-12-22T08:57:24Z
dc.date.available2017-12-22T08:57:24Z
dc.date.issued2017-01-01
dc.description.abstractAbstract Imaging flow cytometry has been applied to address questions in infection biology, in particular, infections induced by intracellular pathogens. This methodology, which utilizes specialized analytic software makes it possible to analyze hundreds of quantified features for hundreds of thousands of individual cellular or subcellular events in a single experiment. Imaging flow cytometry analysis of host cell-pathogen interaction can thus quantitatively addresses a variety of biological questions related to intracellular infection, including cell counting, internalization score, and subcellular patterns of co-localization. Here, we provide an overview of recent achievements in the use of fluorescently labeled prokaryotic or eukaryotic pathogens in human cellular infections in analysis of host-pathogen interactions. Specifically, we give examples of Imagestream-based analysis of cell lines infected with Toxoplasma gondii or Mycobacterium tuberculosis. Furthermore, we illustrate the capabilities of imaging flow cytometry using a combination of standard IDEAS™ software and the more recently developed Feature Finder algorithm, which is capable of identifying statistically significant differences between researcher-defined image galleries. We argue that the combination of imaging flow cytometry with these software platforms provides a powerful new approach to understanding host control of intracellular pathogens.en_US
dc.identifierDOI:10.1016/j.ymeth.2016.09.007
dc.identifier.citationViraga Haridas, Shahin Ranjbar, Ivan A. Vorobjev, Anne E. Goldfeld, Natasha S. Barteneva, Imaging flow cytometry analysis of intracellular pathogens, In Methods, Volume 112, 2017, Pages 91-104en_US
dc.identifier.issn10462023
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1046202316303115
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/3054
dc.language.isoenen_US
dc.publisherMethodsen_US
dc.relation.ispartofMethods
dc.rights.license© 2016 Elsevier Inc. All rights reserved.
dc.subjectImaging flow cytometryen_US
dc.subjectFluorescent proteinen_US
dc.subjectIntracellular pathogenen_US
dc.subjectMycobacteria tuberculosisen_US
dc.subjectToxoplasma gondiien_US
dc.subjectFeature Finderen_US
dc.subjectCellular heterogeneityen_US
dc.subjectColocalizationen_US
dc.subjectPhagosome maturationen_US
dc.subjectRab5en_US
dc.subjectRab7en_US
dc.titleImaging flow cytometry analysis of intracellular pathogensen_US
dc.typeArticleen_US
elsevier.aggregationtypeJournal
elsevier.coverdate2017-01-01
elsevier.coverdisplaydate1 January 2017
elsevier.endingpage104
elsevier.identifier.doi10.1016/j.ymeth.2016.09.007
elsevier.identifier.eid1-s2.0-S1046202316303115
elsevier.identifier.piiS1046-2023(16)30311-5
elsevier.identifier.scopusid84994494300
elsevier.issue.nameFlow Cytometry
elsevier.openaccess0
elsevier.openaccessarticlefalse
elsevier.openarchivearticlefalse
elsevier.startingpage91
elsevier.teaserImaging flow cytometry has been applied to address questions in infection biology, in particular, infections induced by intracellular pathogens. This methodology, which utilizes specialized analytic...
elsevier.volume112
workflow.import.sourcescience

Files

Collections