Isogeometric Boundary-Element Analysis for the Wave-Resistance Problem using T-splines

Loading...
Thumbnail Image

Date

Authors

Ginnis, A.I.
Kostas, Konstantinos
Politis, C.G.
Kaklis, P.D.
Belibassakis, K.A.
Gerostathis, Th.P.
Scott, M.A.
Hughes, T.J.R

Journal Title

Journal ISSN

Volume Title

Publisher

Computer Methods in Applied Mechanics and Engineering. Elsevier

Abstract

In this paper we couple collocated Boundary Element Methods (BEM) with unstructured analysis suitable T-spline surfaces for solving a linear Boundary Integral Equation (BIE) arising in the context of a ship-hydrodynamic problem, namely the so-called Neumann-Kelvin problem, following the formulation by Brard (1972) [1] and Baar & Price (1988) [2]. The local-refinement capabilities of the adopted T-spline bases, which are used for representing both the geometry of the hull and approximating the solution of the associated BIE, in accordance with the Isogeometric concept proposed by Hughes et al. (2005) [3], lead to a solver that achieves the same error level for many fewer degrees of freedom as compared with the corresponding NURBS-based Isogeometric-BEM solver recently developed in Belibassakis et al. (2013) [4]. In this connection, this paper makes a step towards integrating modern CAD representations for ship-hulls with hydrodynamic solvers of improved accuracy and efficiency, which is a prerequisite for building efficient ship-hull optimizers.

Description

Citation

A.I. Ginnisa, , K.V. Kostasb, C.G. Politisb, P.D. Kaklisa,c, K.A. Belibassakisa, Th.P. Gerostathisb, M.A. Scottd, T.J.R Hughes; 2014; Isogeometric Boundary-Element Analysis for the Wave-Resistance Problem using T-splines; Elsevier; http://nur.nu.edu.kz/handle/123456789/2005

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States