Sparse distributed localized gradient fused features of objects

dc.contributor.authorSudhakaran, Swathikiran
dc.contributor.authorPappachen James, Alex
dc.creatorSwathikiran, Sudhakaran
dc.date.accessioned2017-12-14T09:00:11Z
dc.date.available2017-12-14T09:00:11Z
dc.date.issued2015-04-01
dc.description.abstractAbstract The sparse, hierarchical, and modular processing of natural signals is related to the ability of humans to recognize objects with high accuracy. In this study, we report a sparse feature processing and encoding method, which improved the recognition performance of an automated object recognition system. Randomly distributed localized gradient enhanced features were selected before employing aggregate functions for representation, where we used a modular and hierarchical approach to detect the object features. These object features were combined with a minimum distance classifier, thereby obtaining object recognition system accuracies of 93% using the Amsterdam library of object images (ALOI) database, 92% using the Columbia object image library (COIL)-100 database, and 69% using the PASCAL visual object challenge 2007 database. The object recognition performance was shown to be robust to variations in noise, object scaling, and object shifts. Finally, a comparison with eight existing object recognition methods indicated that our new method improved the recognition accuracy by 10% with ALOI, 8% with the COIL-100 database, and 10% with the PASCAL visual object challenge 2007 database.en_US
dc.identifierDOI:10.1016/j.patcog.2014.10.002
dc.identifier.citationSwathikiran Sudhakaran, Alex Pappachen James, Sparse distributed localized gradient fused features of objects, In Pattern Recognition, Volume 48, Issue 4, 2015, Pages 1538-1546en_US
dc.identifier.issn00313203
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0031320314003860
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/2899
dc.language.isoenen_US
dc.publisherPattern Recognitionen_US
dc.relation.ispartofPattern Recognition
dc.rights.licenseCopyright © 2014 Elsevier Ltd. All rights reserved.
dc.subjectBrain-inspired systemen_US
dc.subjectFeature fusionen_US
dc.subjectHierarchyen_US
dc.subjectModularityen_US
dc.subjectObject featureen_US
dc.subjectObject recognitionen_US
dc.subjectSparse featureen_US
dc.titleSparse distributed localized gradient fused features of objectsen_US
dc.typeArticleen_US
elsevier.aggregationtypeJournal
elsevier.coverdate2015-04-01
elsevier.coverdisplaydateApril 2015
elsevier.endingpage1546
elsevier.identifier.doi10.1016/j.patcog.2014.10.002
elsevier.identifier.eid1-s2.0-S0031320314003860
elsevier.identifier.piiS0031-3203(14)00386-0
elsevier.identifier.scopusid84920649420
elsevier.issue.identifier4
elsevier.openaccess0
elsevier.openaccessarticlefalse
elsevier.openarchivearticlefalse
elsevier.startingpage1538
elsevier.teaserThe sparse, hierarchical, and modular processing of natural signals is related to the ability of humans to recognize objects with high accuracy. In this study, we report a sparse feature processing...
elsevier.volume48
workflow.import.sourcescience

Files

Collections