Reverse Stein–Weiss, Hardy–Littlewood–Sobolev, Hardy, Sobolev and Caffarelli–Kohn–Nirenberg inequalities on homogeneous groups

dc.contributor.authorKassymov Aidyn
dc.contributor.authorRuzhansky Michael
dc.contributor.authorSuragan Durvudkhan
dc.date.accessioned2025-08-27T04:56:09Z
dc.date.available2025-08-27T04:56:09Z
dc.date.issued2022-07-23
dc.description.abstractAbstract In this note, we prove the reverse Stein–Weiss inequality on general homogeneous Lie groups. The results obtained extend previously known inequalities. Special properties of homogeneous norms and the reverse integral Hardy inequality play key roles in our proofs. Also, we prove reverse Hardy, Hardy–Littlewood–Sobolev, L p {L^{p}} -Sobolev and L p {L^{p}} -Caffarelli–Kohn–Nirenberg inequalities on homogeneous Lie groups.en
dc.identifier.citationKassymov Aidyn; Ruzhansky Michael; Suragan Durvudkhan. (2022). Reverse Stein–Weiss, Hardy–Littlewood–Sobolev, Hardy, Sobolev and Caffarelli–Kohn–Nirenberg inequalities on homogeneous groups. Forum Mathematicum. https://doi.org/10.1515/forum-2021-0110en
dc.identifier.doi10.1515/forum-2021-0110
dc.identifier.urihttps://doi.org/10.1515/forum-2021-0110
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/10447
dc.language.isoen
dc.publisherWalter de Gruyter GmbH
dc.source(2022)en
dc.subjectRiesz potential, fractional operator, reverse Hardy-Littlewood-Sobolev inequality, reverse Stein-Weiss inequality, reverse Hardy inequality, reverse Sobolev inequality, reverse Caffarelli-Kohn-Nirenberg inequality, homogeneous Lie group. en
dc.titleReverse Stein–Weiss, Hardy–Littlewood–Sobolev, Hardy, Sobolev and Caffarelli–Kohn–Nirenberg inequalities on homogeneous groupsen
dc.typearticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1515_forum-2021-0110.pdf
Size:
178.3 KB
Format:
Adobe Portable Document Format

Collections