Function Spaces on Homogeneous Groups

dc.contributor.authorMichael Ruzhansky;
dc.contributor.authorDurvudkhan Suragan
dc.date.accessioned2025-08-12T10:01:28Z
dc.date.available2025-08-12T10:01:28Z
dc.date.issued2019
dc.description.abstractIn this chapter, we describe several function spaces on homogeneous groups. The origins of the extensive use of homogeneous groups in analysis go back to the book [FS82] of Folland and Stein where Hardy spaces on homogeneous groups have been thoroughly analysed. It turns out that several other function spaces can be defined on homogeneous groups since their main structural properties essentially depend only on the group and dilation structures. Thus, in this chapter we carry out such a construction for Morrey and Campanato spaces and analyse their main properties. Moreover, we describe a version of Sobolev spaces associated to the Euler operator. We call such spaces the Euler–Hilbert–Sobolev spaces.
dc.identifier.citationRuzhansky, M.; Suragan, D. (2019). Function Spaces on Homogeneous Groups. In: Hardy Inequalities on Homogeneous Groups, Progress in Mathematics, vol. 327, pp. 405–450. DOI: 10.1007/978-3-030-02895-4_11
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9180
dc.language.isoen
dc.subjecthomogeneous groups
dc.subjectfunction spaces
dc.subjectMorrey spaces
dc.subjectCampanato spaces
dc.subjectEuler–Hilbert–Sobolev spaces
dc.subjectHardy spaces
dc.titleFunction Spaces on Homogeneous Groups
dc.typeBook chapter

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
85068783004_Function Spaces on Homogeneous Groups.pdf
Size:
780.21 KB
Format:
Adobe Portable Document Format

Collections