Predicting asphalt pavement crack initiation following rehabilitation treatments

dc.contributor.authorKarlaftis, Aristides G.
dc.contributor.authorBadr, Atef
dc.creatorAristides G., Karlaftis
dc.date.accessioned2017-12-14T05:49:38Z
dc.date.available2017-12-14T05:49:38Z
dc.date.issued2015-06-01
dc.description.abstractAbstract Prolongation of the service life of pavements requires efficient prediction of the performance of their structural condition and particularly the occurrence and propagation of cracking of the asphalt layer. Although pavement performance prediction has been extensively investigated in the past, models for predicting the cracking probability and for quantifying impacts of associated explanatory factors following pavement treatment, have not been adequately investigated in the past. In this paper the probability of alligator crack initiation following pavement treatments is modeled with the use of genetically optimized Neural Networks, The proposed methodological approach represents the actual (observed) relationships between of probability of crack initiation and the various design, traffic and weather factors as well as the different rehabilitation strategies. Data from the Long Term Pavement Performance (LTPP) Data Base and the Specific Pavement Study 5 (SPS-5) are used for model development. Results indicate that the proposed approach results in accurately predicting the probability of crack initiation following treatment; furthermore it provided information on the relationship between external factors and cracking probability that can help pavement managers in developing appropriate rehabilitation strategies.en_US
dc.identifierDOI:10.1016/j.trc.2015.03.031
dc.identifier.citationAristides G. Karlaftis, Atef Badr, Predicting asphalt pavement crack initiation following rehabilitation treatments, In Transportation Research Part C: Emerging Technologies, Volume 55, 2015, Pages 510-517en_US
dc.identifier.issn0968090X
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0968090X15001205
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/2891
dc.language.isoenen_US
dc.publisherTransportation Research Part C: Emerging Technologiesen_US
dc.relation.ispartofTransportation Research Part C: Emerging Technologies
dc.rights.licenseCopyright © 2015 Elsevier Ltd. All rights reserved.
dc.subjectPavement crackingen_US
dc.subjectNeural networksen_US
dc.subjectPavement rehabilitationen_US
dc.titlePredicting asphalt pavement crack initiation following rehabilitation treatmentsen_US
dc.typeArticleen_US
elsevier.aggregationtypeJournal
elsevier.coverdate2015-06-01
elsevier.coverdisplaydateJune 2015
elsevier.endingpage517
elsevier.identifier.doi10.1016/j.trc.2015.03.031
elsevier.identifier.eid1-s2.0-S0968090X15001205
elsevier.identifier.piiS0968-090X(15)00120-5
elsevier.identifier.scopusid84936986481
elsevier.issue.nameEngineering and Applied Sciences Optimization (OPT-i) - Professor Matthew G. Karlaftis Memorial Issue
elsevier.openaccess0
elsevier.openaccessarticlefalse
elsevier.openarchivearticlefalse
elsevier.startingpage510
elsevier.teaserProlongation of the service life of pavements requires efficient prediction of the performance of their structural condition and particularly the occurrence and propagation of cracking of the asphalt...
elsevier.volume55
workflow.import.sourcescience

Files

Collections