EFFECTS OF SCANNING TRAJECTORY AND PARAMETERS ON THE IMAGE QUALITIES OF MAGNETIC PARTICLE IMAGING

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Nazarbayev University School of Engineering and Digital Sciences

Abstract

Today, scanning methods are getting more popular and becoming an important part of many devices like microelectromechanical systems (MEMS), light detection and ranging (LiDAR) [1], atomic force microscopy (AFM) [2], medical imaging techniques (MRI [3]–[6] and MPI [7]–[11]), and mapping and surveying mechanisms [12], frequency modulated gyroscopes [13]. However, even though scanning techniques have many uses, one of the most important is in medical imaging. These pictures are important because they can be used to see inside the body without needing surgery. They help doctors diagnose, keep track of, stop, and treat many different illnesses [14], [15]. These techniques are used to look at the patient's field of vision and take a picture to study later to understand how the patient is doing. Choosing the right scanning path is very important to get the correct results. By picking the best path, we can scan faster and make the pictures clearer to help diagnose better. This means that the way a scan is done is very important for helping patients [16]...

Description

Citation

Mukhatov, A. (2024). Effects of scanning trajectory and parameters on the image qualities of magnetic particle imaging. Nazarbayev University School of Engineering and Digital Sciences

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States