END-TO-END DEEP DIAGNOSIS OF X-RAY IMAGES

dc.contributor.authorUrinbayev, Kudaibergen
dc.contributor.authorOrazbek, Yerassyl
dc.contributor.authorNurambek, Yernur
dc.contributor.authorMirzakhmetov, Almas
dc.contributor.authorVarol, Huseyin Atakan
dc.date.accessioned2022-07-15T08:29:47Z
dc.date.available2022-07-15T08:29:47Z
dc.date.issued2020
dc.description.abstractIn this work, we present an end-to-end deep learning framework for X-ray image diagnosis. As the first step, our system determines whether a submitted image is an X-ray or not. After it classifies the type of the X-ray, it runs the dedicated abnormality classification network. In this work, we only focus on the chest X-rays for abnormality classification. However, the system can be extended to other X-ray types easily. Our deep learning classifiers are based on DenseNet-121 architecture. The test set accuracy obtained for ’X-ray or Not’, ’X-ray Type Classification’, and ’Chest Abnormality Classification’ tasks are 0.987, 0.976, and 0.947, respectively, resulting into an end-to-end accuracy of 0.91. For achieving better results than the state-of the-art in the ’Chest Abnormality Classification’, we utilize the new RAdam optimizer. We also use Gradient-weighted Class Activation Mapping for visual explanation of the results. Our results show the feasibility of a generalized online projectional radiography diagnosis system.en_US
dc.identifier.citationUrinbayev, K., Orazbek, Y., Nurambek, Y., Mirzakhmetov, A., Varol, A. 2020. Arxiv. End-to-End Deep Diagnosis of X-ray Images ERen_US
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/6447
dc.language.isoenen_US
dc.publisherarxiven_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectType of access: Open Accessen_US
dc.subjectChest X-ray imagesen_US
dc.subjectcomputer-aided diagnosisen_US
dc.subjectdigital radiographyen_US
dc.subjectdeep learningen_US
dc.subjectneural networksen_US
dc.subjectexplanatory visualizationen_US
dc.titleEND-TO-END DEEP DIAGNOSIS OF X-RAY IMAGESen_US
dc.typeArticleen_US
workflow.import.sourcescience

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2003.08605.pdf
Size:
676.47 KB
Format:
Adobe Portable Document Format
Description:
article

Collections