High-dimensional statistical learning: Roots, justifications, and potential machineries

dc.contributor.authorZollanvari, Amin
dc.date.accessioned2017-01-06T08:23:05Z
dc.date.available2017-01-06T08:23:05Z
dc.date.issued2016-04-12
dc.description.abstractHigh-dimensional data generally refer to data in which the number of variables is larger than the sample size. Analyzing such datasets poses great challenges for classical statistical learning because the finite-sample performance of methods developed within classical statistical learning does not live up to classical asymptotic premises in which the sample size unboundedly grows for a fixed dimensionality of observations.ru_RU
dc.identifier.citationZollanvari, A. (2016). High-dimensional statistical learning: Roots, justifications, and potential machineries. Cancer Informatics, 15, 109-121. DOI: 10.4137/CIN.S30804ru_RU
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/2183
dc.language.isoenru_RU
dc.publisherCancer Informaticsru_RU
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectCurse of dimensionalityru_RU
dc.subjectDouble asymptoticsru_RU
dc.subjectG-analysisru_RU
dc.subjectHigh-dimensional analysisru_RU
dc.subjectKolmogorov asymptoticsru_RU
dc.subjectRandom matrix theoryru_RU
dc.subjectRidge estimationru_RU
dc.subjectShrinkageru_RU
dc.subjectSparsityru_RU
dc.subjectResearch Subject Categories::TECHNOLOGY::Chemical engineeringru_RU
dc.titleHigh-dimensional statistical learning: Roots, justifications, and potential machineriesru_RU
dc.typeArticleru_RU

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
statistical learning.pdf
Size:
280.88 KB
Format:
Adobe Portable Document Format
Description:

Collections