Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries

Loading...
Thumbnail Image

Authors

Zhao, Yan
Ren, Jun
Tan, Taizhe
Babaa, Moulay-Rachid
Bakenov, Zhumabay
Liu, Ning
Zhang, Yongguang

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

The synthesis of highly porous carbon (HPC) materials from poplar catkin by KOH chemical activation and hydrothermal carbonization as a conductive additive to a lithium-sulfur cathode is reported. Elemental sulfur was composited with as-prepared HPC through a melt diffusion method to form a S/HPC nanocomposite. Structure and morphology characterization revealed a hierarchically sponge-like structure of HPC with high pore volume (0.62 cm3 g􀀀1) and large specific surface area (1261.7 m2 g􀀀1). When tested in Li/S batteries, the resulting compound demonstrated excellent cycling stability, delivering a second-specific capacity of 1154 mAh g􀀀1 as well as presenting 74% retention of value after 100 cycles at 0.1 C. Therefore, the porous structure of HPC plays an important role in enhancing electrochemical properties, which provides conditions for effective charge transfer and effective trapping of soluble polysulfide intermediates, and remarkably improves the electrochemical performance of S/HPC composite cathodes.

Description

Citation

Zhao, Y.; Ren, J.; Tan, T.; Babaa, M.-R.; Bakenov, Z.; Liu, N.; Zhang, Y. Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries. Nanomaterials 2017, 7, 260.

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States