Quantum power: a Lorentz invariant approach to Hawking radiation
| dc.contributor.author | Good Michael R. R. | |
| dc.contributor.author | Linder Eric V. | |
| dc.date.accessioned | 2025-08-27T04:55:13Z | |
| dc.date.available | 2025-08-27T04:55:13Z | |
| dc.date.issued | 2022-03-01 | |
| dc.description.abstract | Particle radiation from black holes has an observed emission power depending on the surface gravity $$\kappa = c^4/(4GM)$$ κ = c 4 / ( 4 G M ) as $$\begin{aligned} P_{\text {black hole}} \sim \frac{\hbar \kappa ^2}{6\pi c^2} = \frac{\hbar c^6}{96\pi G^2 M^2}, \end{aligned}$$ P black hole ∼ ħ κ 2 6 π c 2 = ħ c 6 96 π G 2 M 2 , while both the radiation from accelerating particles and moving mirrors (accelerating boundaries) obey similar relativistic Larmor powers, $$\begin{aligned} P_{\text {electron}}= \frac{q^2\alpha ^2}{6\pi \epsilon _0 c^3}, \quad P_{\text {mirror}} =\frac{\hbar \alpha ^2}{6\pi c^2}, \end{aligned}$$ P electron = q 2 α 2 6 π ϵ 0 c 3 , P mirror = ħ α 2 6 π c 2 , where $$\alpha $$ α is the Lorentz invariant proper acceleration. This equivalence between the Lorentz invariant powers suggests a close relation that could be used to understand black hole radiation. We show that an accelerating mirror with a prolonged metastable acceleration plateau can provide a unitary, thermal, energy-conserved analog model for black hole decay. | en |
| dc.identifier.citation | Good Michael R. R.; Linder Eric V.. (2022). Quantum power: a Lorentz invariant approach to Hawking radiation. The European Physical Journal C. https://doi.org/10.1140/epjc/s10052-022-10167-6 | en |
| dc.identifier.doi | 10.1140/epjc/s10052-022-10167-6 | |
| dc.identifier.uri | https://doi.org/10.1140/epjc/s10052-022-10167-6 | |
| dc.identifier.uri | https://nur.nu.edu.kz/handle/123456789/10428 | |
| dc.language.iso | en | |
| dc.publisher | Springer Science and Business Media LLC | |
| dc.rights | All rights reserved | en |
| dc.source | (2022) | en |
| dc.title | Quantum power: a Lorentz invariant approach to Hawking radiation | en |
| dc.type | article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1140_epjc_s10052-022-10167-6.pdf
- Size:
- 382.3 KB
- Format:
- Adobe Portable Document Format