BMO functions and balayage of Carleson measures in the Bessel setting

dc.contributor.authorVíctor Almeida
dc.contributor.authorJorge J. Betancor
dc.contributor.authorAlejandro J. Castro
dc.contributor.authorJuan C. Fariña
dc.contributor.authorLourdes Rodríguez‑Mesa
dc.date.accessioned2025-08-07T11:18:01Z
dc.date.available2025-08-07T11:18:01Z
dc.date.issued2018
dc.description.abstractBy BMOₒ(ℝ) we denote the space consisting of all those odd and bounded mean oscillation functions on ℝ. In this paper we characterize the functions in BMOₒ(ℝ) with bounded support as those ones that can be written as a sum of a bounded function on (0, ∞) plus the balayage of a Carleson measure on (0, ∞)×(0, ∞) with respect to the Poisson semigroup associated with the Bessel operator Bₗ := –x⁻ˡ d dx x^{2ₗ} d dx x⁻ˡ, λ > 0. This result can be seen as an extension to Bessel setting of a classical result due to Carleson.
dc.identifier.citationAlmeida, V., Betancor, J. J., Castro, A. J., Fariña, J. C., & Rodríguez‑Mesa, L. (2018). BMO functions and balayage of Carleson measures in the Bessel setting. Revista Matemática Complutense, 32(1), 57–98. https://doi.org/10.1007/s13163‑018‑0270‑9
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9138
dc.language.isoen
dc.subjectBalayage
dc.subjectBessel operators
dc.subjectBMO functions
dc.subjectCarleson measure
dc.titleBMO functions and balayage of Carleson measures in the Bessel setting
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
85050298157_BMO functions and balayage of Carleson measures in the Bessel setting.pdf
Size:
346.29 KB
Format:
Adobe Portable Document Format

Collections