Turbulence in core-collapse supernovae

dc.contributor.authorRoberts, Luke F
dc.contributor.authorCouch, Sean M
dc.contributor.authorMösta, Philipp
dc.contributor.authorOtt, Christian D
dc.contributor.authorAbdikamalov, Ernazar
dc.contributor.authorRadice, David
dc.contributor.authorRadice, David
dc.date.accessioned2025-08-19T09:15:04Z
dc.date.available2025-08-19T09:15:04Z
dc.date.issued2018-04-09
dc.description.abstractMultidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relicperturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.
dc.identifier.doi10.1088/1361-6471/aab872
dc.identifier.issn0954-3899
dc.identifier.otherFilename:10.1088_1361-6471_aab872.pdf
dc.identifier.urihttps://doi.org/10.1088/1361-6471/aab872
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9447
dc.language.isoen
dc.publisherIOP Publishing
dc.relation.ispartofJournal of Physics G: Nuclear and Particle Physicsen
dc.sourceJournal of Physics G: Nuclear and Particle Physics, 45(5), 053003, (2018)en
dc.subjectsupernovae, astrophysical turbulence, methods: numerical
dc.titleTurbulence in core-collapse supernovaeen
dc.typeJournal Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Radice_2018_J._Phys._G__Nucl._Part._Phys._45_053003.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format

Collections