Turbulence in core-collapse supernovae
| dc.contributor.author | Roberts, Luke F | |
| dc.contributor.author | Couch, Sean M | |
| dc.contributor.author | Mösta, Philipp | |
| dc.contributor.author | Ott, Christian D | |
| dc.contributor.author | Abdikamalov, Ernazar | |
| dc.contributor.author | Radice, David | |
| dc.contributor.author | Radice, David | |
| dc.date.accessioned | 2025-08-19T09:15:04Z | |
| dc.date.available | 2025-08-19T09:15:04Z | |
| dc.date.issued | 2018-04-09 | |
| dc.description.abstract | Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relicperturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism. | |
| dc.identifier.doi | 10.1088/1361-6471/aab872 | |
| dc.identifier.issn | 0954-3899 | |
| dc.identifier.other | Filename:10.1088_1361-6471_aab872.pdf | |
| dc.identifier.uri | https://doi.org/10.1088/1361-6471/aab872 | |
| dc.identifier.uri | https://nur.nu.edu.kz/handle/123456789/9447 | |
| dc.language.iso | en | |
| dc.publisher | IOP Publishing | |
| dc.relation.ispartof | Journal of Physics G: Nuclear and Particle Physics | en |
| dc.source | Journal of Physics G: Nuclear and Particle Physics, 45(5), 053003, (2018) | en |
| dc.subject | supernovae, astrophysical turbulence, methods: numerical | |
| dc.title | Turbulence in core-collapse supernovae | en |
| dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Radice_2018_J._Phys._G__Nucl._Part._Phys._45_053003.pdf
- Size:
- 1.76 MB
- Format:
- Adobe Portable Document Format