Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits

dc.contributor.authorOlga Krestinskaya
dc.contributor.authorKhaled Nabil Salama
dc.contributor.authorAlex Pappachen James
dc.date.accessioned2025-08-07T11:34:59Z
dc.date.available2025-08-07T11:34:59Z
dc.date.issued2019
dc.description.abstractThe on‑chip implementation of learning algorithms would speed up the training of neural networks in crossbar arrays. The circuit level design and implementation of a back‑propagation algorithm using gradient descent operation for neural network architectures is an open problem. In this paper, we propose analog backpropagation learning circuits for various memristive learning architectures, such as deep neural network, binary neural network, multiple neural network, hierarchical temporal memory, and long short‑term memory. The circuit design and verification are done using TSMC 180‑nm CMOS process models and TiO₂‑based memristor models. The application level validations of the system are done using XOR problem, MNIST character, and Yale face image databases.
dc.identifier.citationKrestinskaya, O., Salama, K. N., & James, A. P. (2019). Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(2), 719–732. https://doi.org/10.1109/TCSI.2018.2866510
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9141
dc.language.isoen
dc.subjectAnalog circuits
dc.subjectbackpropagation
dc.subjectbinary neural network
dc.subjectcrossbar
dc.subjectdeep neural network
dc.subjecthierarchical temporal memory
dc.subjectlearning
dc.subjectlong-short term memory
dc.subjectmemristor
dc.subjectmultiple neural network
dc.titleLearning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
85053631277_Learning in memristive neural network architectures using analog backpropagation.pdf
Size:
5.97 MB
Format:
Adobe Portable Document Format

Collections