Variable exponent Hardy spaces associated with discrete Laplacians on graphs

dc.contributor.authorVíctor Almeida
dc.contributor.authorJ. J. Betancor
dc.contributor.authorAlejandro J. Castro
dc.contributor.authorRodríguez‑Mesa
dc.date.accessioned2025-08-07T11:23:33Z
dc.date.available2025-08-07T11:23:33Z
dc.date.issued2019
dc.description.abstractIn this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood‑Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.
dc.identifier.citationAlmeida, V., Betancor, J. J., Castro, A. J., & Rodríguez‑Mesa, L. (2019). Variable exponent Hardy spaces associated with discrete Laplacians on graphs. Science China Mathematics, 62(1), 73–124. https://doi.org/10.1007/s11425‑017‑9200‑2
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9140
dc.language.isoen
dc.subjectdiscrete Laplacians
dc.subjectgraphs
dc.subjectHardy spaces
dc.subjectvariable exponent
dc.subjectspectral multipliers
dc.subjectsquare functions
dc.subjectRiesz transforms
dc.titleVariable exponent Hardy spaces associated with discrete Laplacians on graphs
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
85053401246_Variable exponent Hardy spaces associated with discrete Laplacians on graphs.pdf
Size:
865.44 KB
Format:
Adobe Portable Document Format

Collections