An extended Hessenberg form for Hamiltonian matrices

dc.contributor.authorFerranti, Micol
dc.contributor.authorIannazzo, Bruno
dc.contributor.authorMach, Thomas
dc.contributor.authorVandebril, Raf
dc.date.accessioned2017-01-06T10:02:29Z
dc.date.available2017-01-06T10:02:29Z
dc.date.issued2016-06-01
dc.description.abstractA unitary symplectic similarity transformation for a special class of Hamiltonian matrices to extended Hamiltonian Hessenberg form is presented. Whereas the classical Hessenberg form links to Krylov subspaces, the extended Hessenberg form links to extended Krylov subspaces. The presented algorithm generalizes thus the classic reduction to Hamiltonian Hessenberg form and offers more freedom in the choice of Hamiltonian condensed forms, to be used within an extended Hamiltonian QR algorithm. Theoretical results identifying the structure of the extended Hamiltonian Hessenberg form and proofs of uniqueness of the reduction process are included. Numerical experiments confirm the validity of the approach.ru_RU
dc.identifier.citationFerranti, M., Iannazzo, B., Mach, T., & Vandebril, R. (2016). An extended Hessenberg form for Hamiltonian matrices. Calcolo, 1-31. DOI: 10.1007/s10092-016-0192-1ru_RU
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/2195
dc.language.isoenru_RU
dc.publisherCalcoloru_RU
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectextended hessenberg formsru_RU
dc.subjecthamiltonian eigenvalue problemsru_RU
dc.subjectQR algorithmru_RU
dc.titleAn extended Hessenberg form for Hamiltonian matricesru_RU
dc.typeArticleru_RU

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Micol Ferranti, Bruno Iannazzo, Thomas Mach, Raf Vandebril.pdf
Size:
15.74 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.22 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections