Group theory, entropy and the third law of thermodynamics
| dc.contributor.author | Canturk, Bilal | |
| dc.contributor.author | Oikonomou, Thomas | |
| dc.contributor.author | Bagci, G. Baris | |
| dc.creator | Bilal, Canturk | |
| dc.date.accessioned | 2017-12-21T05:34:15Z | |
| dc.date.available | 2017-12-21T05:34:15Z | |
| dc.date.issued | 2017-02-01 | |
| dc.description.abstract | Abstract Curado et al. (2016) have recently studied the axiomatic structure and the universality of a three-parameter trace-form entropy inspired by the group-theoretical structure. In this work, we study the group-theoretical entropy Sa,b,r in the context of the third law of thermodynamics where the parameters {a,b,r} are all independent. We show that this three-parameter entropy expression can simultaneously satisfy the third law of thermodynamics and the three Khinchin axioms, namely continuity, concavity and expansibility only when the parameter b is set to zero. In other words, it is thermodynamically valid only as a two-parameter generalization Sa,r. Moreover, the restriction set by the third law i.e., the condition b=0, is important in the sense that the so obtained two-parameter group-theoretical entropy becomes extensive only when this condition is met. We also illustrate the interval of validity of the third law using the one-dimensional Ising model with no external field. Finally, we show that the Sa,r is in the same universality class as that of the Kaniadakis entropy for 0<r<1 while it has a distinct universality class in the interval −1<r<0. | en_US |
| dc.identifier | DOI:10.1016/j.aop.2016.12.013 | |
| dc.identifier.citation | Bilal Canturk, Thomas Oikonomou, G. Baris Bagci, Group theory, entropy and the third law of thermodynamics, In Annals of Physics, Volume 377, 2017, Pages 62-70 | en_US |
| dc.identifier.issn | 00034916 | |
| dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0003491616302846 | |
| dc.identifier.uri | http://nur.nu.edu.kz/handle/123456789/2994 | |
| dc.language.iso | en | en_US |
| dc.publisher | Annals of Physics | en_US |
| dc.relation.ispartof | Annals of Physics | |
| dc.rights.license | © 2016 Elsevier Inc. All rights reserved. | |
| dc.subject | Generalized entropies | en_US |
| dc.subject | Group theory | en_US |
| dc.subject | Third law of thermodynamics | en_US |
| dc.subject | Khinchin axioms | en_US |
| dc.subject | Extensivity | en_US |
| dc.title | Group theory, entropy and the third law of thermodynamics | en_US |
| dc.type | Article | en_US |
| elsevier.aggregationtype | Journal | |
| elsevier.coverdate | 2017-02-01 | |
| elsevier.coverdisplaydate | February 2017 | |
| elsevier.endingpage | 70 | |
| elsevier.identifier.doi | 10.1016/j.aop.2016.12.013 | |
| elsevier.identifier.eid | 1-s2.0-S0003491616302846 | |
| elsevier.identifier.pii | S0003-4916(16)30284-6 | |
| elsevier.identifier.scopusid | 85009290696 | |
| elsevier.openaccess | 0 | |
| elsevier.openaccessarticle | false | |
| elsevier.openarchivearticle | false | |
| elsevier.startingpage | 62 | |
| elsevier.teaser | Curado et al. (2016) have recently studied the axiomatic structure and the universality of a three-parameter trace-form entropy inspired by the group-theoretical structure. In this work, we study the... | |
| elsevier.volume | 377 | |
| workflow.import.source | science |