Group theory, entropy and the third law of thermodynamics

dc.contributor.authorCanturk, Bilal
dc.contributor.authorOikonomou, Thomas
dc.contributor.authorBagci, G. Baris
dc.creatorBilal, Canturk
dc.date.accessioned2017-12-21T05:34:15Z
dc.date.available2017-12-21T05:34:15Z
dc.date.issued2017-02-01
dc.description.abstractAbstract Curado et al. (2016) have recently studied the axiomatic structure and the universality of a three-parameter trace-form entropy inspired by the group-theoretical structure. In this work, we study the group-theoretical entropy Sa,b,r in the context of the third law of thermodynamics where the parameters {a,b,r} are all independent. We show that this three-parameter entropy expression can simultaneously satisfy the third law of thermodynamics and the three Khinchin axioms, namely continuity, concavity and expansibility only when the parameter b is set to zero. In other words, it is thermodynamically valid only as a two-parameter generalization Sa,r. Moreover, the restriction set by the third law i.e., the condition b=0, is important in the sense that the so obtained two-parameter group-theoretical entropy becomes extensive only when this condition is met. We also illustrate the interval of validity of the third law using the one-dimensional Ising model with no external field. Finally, we show that the Sa,r is in the same universality class as that of the Kaniadakis entropy for 0<r<1 while it has a distinct universality class in the interval −1<r<0.en_US
dc.identifierDOI:10.1016/j.aop.2016.12.013
dc.identifier.citationBilal Canturk, Thomas Oikonomou, G. Baris Bagci, Group theory, entropy and the third law of thermodynamics, In Annals of Physics, Volume 377, 2017, Pages 62-70en_US
dc.identifier.issn00034916
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0003491616302846
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/2994
dc.language.isoenen_US
dc.publisherAnnals of Physicsen_US
dc.relation.ispartofAnnals of Physics
dc.rights.license© 2016 Elsevier Inc. All rights reserved.
dc.subjectGeneralized entropiesen_US
dc.subjectGroup theoryen_US
dc.subjectThird law of thermodynamicsen_US
dc.subjectKhinchin axiomsen_US
dc.subjectExtensivityen_US
dc.titleGroup theory, entropy and the third law of thermodynamicsen_US
dc.typeArticleen_US
elsevier.aggregationtypeJournal
elsevier.coverdate2017-02-01
elsevier.coverdisplaydateFebruary 2017
elsevier.endingpage70
elsevier.identifier.doi10.1016/j.aop.2016.12.013
elsevier.identifier.eid1-s2.0-S0003491616302846
elsevier.identifier.piiS0003-4916(16)30284-6
elsevier.identifier.scopusid85009290696
elsevier.openaccess0
elsevier.openaccessarticlefalse
elsevier.openarchivearticlefalse
elsevier.startingpage62
elsevier.teaserCurado et al. (2016) have recently studied the axiomatic structure and the universality of a three-parameter trace-form entropy inspired by the group-theoretical structure. In this work, we study the...
elsevier.volume377
workflow.import.sourcescience

Files

Collections