Using Action Dependent Heuristic Dynamic Programming and Genetic Algorithms in the Energy Resource Scheduling Problem
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Nazarbayev University School of Science and Technology
Abstract
Energy management in smart buildings and homes has become an important issue. Proper energy management is judged upon the amount of consumed electrical energy as well as the total electricity cost. In this master thesis, two optimization algorithms, namely Action Dependent Heuristic Dynamic Programming (ADHDP) and Genetic Algorithms (GA) are used for the energy resource scheduling problem. The main objective of the renewable energy resource scheduling problem is to decrease the electricity cost over a fixed time period while meeting demand. In this work, ADHDP and GA were trained and evaluated on different simulation scenarios with various amounts of available renewable energy. It was demonstrated by computer simulations that both ADHDP and GA are effective in cost minimization compared to the baseline method. A correlation between optimization improvement and available renewable energy was also confirmed by computer simulation in all scenarios.
Description
Citation
Gulnaz Sterling. Using Action Dependent Heuristic Dynamic Programming and Genetic Algorithms in the Energy Resource Scheduling Problem. 2017. Department of Computer Science, School of Science and Technology, Nazarbayev University
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States
