Polyacrylonitrile-Nanofiber-Based Gel Polymer Electrolyte for Novel Aqueous Sodium-Ion Battery Based on a Na4Mn9O18 Cathode and Zn Metal Anode

Loading...
Thumbnail Image

Date

2018-08-02

Authors

Zhang, Yongguang
Bakenov, Zhumabay
Tan, Taizhe
Huang, Jin

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

A gel polymer electrolyte was formed by trapping an optimized Na+/Zn2+ mixed-ion aqueous electrolyte in a polyacrylonitrile nanofiber polymer matrix. This electrolyte was used in a novel aqueous sodium-ion battery (ASIB) system, which was assembled by using a zinc anode and Na4Mn9O18 cathode. The nanorod-like Na4Mn9O18 was synthesized by a hydrothermal soft chemical reaction. The structural and morphological measurement confirmed that the highly crystalline Na4Mn9O18 nanorods are uniformly distributed. Electrochemical tests of Na4Mn9O18//Zn gel polymer battery demonstrated its high cycle stability along with a good rate of performance. The battery delivers an initial discharge capacity of 96 mAh g−1 , and 64 mAh g−1 after 200 cycles at a high cycling rate of 1 C. Our results demonstrate that the Na4Mn9O18//Zn gel polymer battery is a promising and safe high-performance battery.

Description

Keywords

aqueous sodium-ion battery, cathode, gel polymer electrolyte, Na4Mn9O18 nanorod, polyacrylonitrile nanofiber

Citation

Zhang, Y.; Bakenov, Z.; Tan, T.; Huang, J. Polyacrylonitrile-Nanofiber-Based Gel Polymer Electrolyte for Novel Aqueous Sodium-Ion Battery Based on a Na4Mn9O18 Cathode and Zn Metal Anode. Polymers 2018, 10, 853.

Collections