Pressure-dependent physical properties of cesium–niobium oxide: a comprehensive study

dc.contributor.authorAbu Bakar
dc.contributor.authorMuhammad Salman Kiani
dc.contributor.authorRab Nawaz
dc.contributor.authorAbdul Wahab
dc.date.accessioned2025-08-22T10:15:28Z
dc.date.available2025-08-22T10:15:28Z
dc.date.issued2023-01-01
dc.description.abstractPerovskites, an important class of materials, are mostly utilized in memory and spintronic devices. The thermoelectric response calculations for some perovskite oxides have been reported, but their attributes under pressure have rarely been explored. In this current study, the effects of high pressure on various properties of CsNbO3 perovskite oxides in the cubic phase were investigated using the pseudopotential approach and Boltzmann transport theory. Specifically, the structural electronic dispersion relations, density of states, phonon properties, elasto-mechanical properties, optical constants, and thermoelectric performance of the material were analyzed. CsNbO3 was reported to be dynamically stable through the optimization of energy against volume under ambient pressure conditions. The phonon dispersion curves of CsNbO3 were computed at pressures ranging from 60 to 100 GPa to demonstrate its stability under these pressures. At ambient pressure, CsNbO3 is a semiconductor with a wide direct band gap of 1.95 eV. With the increase in pressure, the band gap starts decreasing. An analysis of the imaginary part of the dielectric constant suggests that this material may be useful for sensors and optoelectronic devices. Various thermoelectric response parameters were tested for CsNbO3 at temperatures from 50 K to 800 K, with a step size of 50 K, and pressures of 60–100 GPa. Based on the calculated power factor values and optical parameters, CsNbO3 proved to be a potential candidate for energy harvesting applications.en
dc.identifier.citationBakar Abu, Kiani Muhammad Salman, Nawaz Rab, Wahab Abdul. (2023). Pressure-dependent physical properties of cesium–niobium oxide: a comprehensive study. RSC Advances. https://doi.org/https://doi.org/10.1039/d3ra02398ben
dc.identifier.doi10.1039/d3ra02398b
dc.identifier.urihttps://doi.org/10.1039/d3ra02398b
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9899
dc.language.isoen
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.ispartofRSC Advancesen
dc.sourceRSC Advances, (2023)en
dc.subjectPseudopotentialen
dc.subjectCaesiumen
dc.subjectNiobiumen
dc.subjectPerovskite (structure)en
dc.subjectOxideen
dc.subjectPhase (matter)en
dc.subjectMaterials scienceen
dc.subjectThermodynamicsen
dc.subjectPhysical chemistryen
dc.subjectChemical physicsen
dc.subjectInorganic chemistryen
dc.subjectChemistryen
dc.subjectCondensed matter physicsen
dc.subjectPhysicsen
dc.subjectMetallurgyen
dc.subjectCrystallographyen
dc.subjectOrganic chemistryen
dc.subjecttype of access: open accessen
dc.titlePressure-dependent physical properties of cesium–niobium oxide: a comprehensive studyen
dc.typearticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pressure-dependent_physical_properties_of_cesium–niobium_oxide__a_comprehensive_study__227d11e1.pdf
Size:
3.92 MB
Format:
Adobe Portable Document Format

Collections