Exceptional sets in homogeneous spaces and hausdorff dimension

dc.contributor.authorKadyrov, Shirali
dc.date.accessioned2015-12-28T06:22:51Z
dc.date.available2015-12-28T06:22:51Z
dc.date.issued2015
dc.description.abstractIn this paper we study the dimension of a family of sets arising in open dynamics. We use exponential mixing results for diagonalizable ows in compact homogeneous spaces X to show that the Hausdorff dimension of set of points that lie on trajectories missing a particular open ball of radius r is at most dimX + C rdimX log r; where C > 0 is a constant independent of r > 0. Meanwhile, we also describe a general method for computing the least cardinality of open covers of dynamical sets using volume estimates.ru_RU
dc.identifier.citationKadyrov Shirali; 2015; Exceptional sets in homogeneous spaces and hausdorff dimensionru_RU
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/979
dc.language.isoenru_RU
dc.subjectResearch Subject Categories::MATHEMATICSru_RU
dc.subjectHausdorff dimensionru_RU
dc.titleExceptional sets in homogeneous spaces and hausdorff dimensionru_RU
dc.typeArticleru_RU

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
open.pdf
Size:
267.21 KB
Format:
Adobe Portable Document Format
Description:

Collections