Compact convolutional transformer for subject-independent motor imagery EEG-based BCIs

dc.contributor.authorAigerim Keutayeva
dc.contributor.authorNail Fakhrutdinov
dc.contributor.authorBerdakh Abibullaev
dc.date.accessioned2025-08-26T08:37:02Z
dc.date.available2025-08-26T08:37:02Z
dc.date.issued2024-10-28
dc.description.abstractMotor imagery electroencephalography (EEG) analysis is crucial for the development of effective brain-computer interfaces (BCIs), yet it presents considerable challenges due to the complexity of the data and inter-subject variability. This paper introduces EEGCCT, an application of compact convolutional transformers designed specifically to improve the analysis of motor imagery tasks in EEG. Unlike traditional approaches, EEGCCT model significantly enhances generalization from limited data, effectively addressing a common limitation in EEG datasets. We validate and test our models using the open-source BCI Competition IV datasets 2a and 2b, employing a Leave-One-Subject-Out (LOSO) strategy to ensure subject-independent performance. Our findings demonstrate that EEGCCT not only outperforms conventional models like EEGNet in standard evaluations but also achieves better performance compared to other advanced models such as Conformer, Hybrid s-CViT, and Hybrid t-CViT, while utilizing fewer parameters and achieving an accuracy of 70.12%. Additionally, the paper presents a comprehensive ablation study that includes targeted data augmentation, hyperparameter optimization, and architectural improvements.en
dc.identifier.citationKeutayeva Aigerim, Fakhrutdinov Nail, Abibullaev Berdakh. (2024). Compact convolutional transformer for subject-independent motor imagery EEG-based BCIs. Scientific Reports. https://doi.org/https://doi.org/10.1038/s41598-024-73755-4en
dc.identifier.doi10.1038/s41598-024-73755-4
dc.identifier.urihttps://doi.org/10.1038/s41598-024-73755-4
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/10052
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofScientific Reportsen
dc.rightsAll rights reserveden
dc.sourceScientific Reports, (2024)en
dc.subjectMotor imageryen
dc.subjectElectroencephalographyen
dc.subjectComputer scienceen
dc.subjectBrain–computer interfaceen
dc.subjectTransformeren
dc.subjectSpeech recognitionen
dc.subjectArtificial intelligenceen
dc.subjectNeuroscienceen
dc.subjectPsychologyen
dc.subjectEngineeringen
dc.subjectElectrical engineeringen
dc.subjectVoltageen
dc.subjecttype of access: open accessen
dc.titleCompact convolutional transformer for subject-independent motor imagery EEG-based BCIsen
dc.typearticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1038_s41598-024-73755-4.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format

Collections