Rogers semilattices of punctual numberings
| dc.contributor.author | Nikolay Bazhenov | |
| dc.contributor.author | Manat Mustafa | |
| dc.contributor.author | Sergei Ospichev | |
| dc.date.accessioned | 2025-08-22T10:15:46Z | |
| dc.date.available | 2025-08-22T10:15:46Z | |
| dc.date.issued | 2022-02-01 | |
| dc.description.abstract | The paper works within the framework of punctual computability, which is focused on eliminating unbounded search from constructions in algebra and infinite combinatorics. We study punctual numberings , that is, uniform computations for families S of primitive recursive functions. The punctual reducibility between numberings is induced by primitive recursive functions. This approach gives rise to upper semilattices of degrees, which are called Rogers pr-semilattices . We show that any infinite, uniformly primitive recursive family S induces an infinite Rogers pr-semilattice R . We prove that the semilattice R does not have minimal elements, and every nontrivial interval inside R contains an infinite antichain. In addition, every non-greatest element from R is a part of an infinite antichain. We show that the $\Sigma_1$ -fragment of the theory Th ( R ) is decidable. | en |
| dc.identifier.citation | Bazhenov Nikolay, Mustafa Manat, Ospichev Sergei. (2022). Rogers semilattices of punctual numberings. Mathematical Structures in Computer Science. https://doi.org/https://doi.org/10.1017/s0960129522000093 | en |
| dc.identifier.doi | 10.1017/s0960129522000093 | |
| dc.identifier.uri | https://doi.org/10.1017/s0960129522000093 | |
| dc.identifier.uri | https://nur.nu.edu.kz/handle/123456789/9905 | |
| dc.language.iso | en | |
| dc.publisher | Cambridge University Press (CUP) | |
| dc.relation.ispartof | Mathematical Structures in Computer Science | en |
| dc.rights | All rights reserved | en |
| dc.source | Mathematical Structures in Computer Science, (2022) | en |
| dc.subject | Semilattice | en |
| dc.subject | Antichain | en |
| dc.subject | Mathematics | en |
| dc.subject | Decidability | en |
| dc.subject | Discrete mathematics | en |
| dc.subject | Combinatorics | en |
| dc.subject | Algebra over a field | en |
| dc.subject | Partially ordered set | en |
| dc.subject | Pure mathematics | en |
| dc.subject | Semigroup | en |
| dc.subject | type of access: open access | en |
| dc.title | Rogers semilattices of punctual numberings | en |
| dc.type | article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Rogers_semilattices_of_punctual_numberings__224d96ae.pdf
- Size:
- 421.68 KB
- Format:
- Adobe Portable Document Format