Rogers semilattices of punctual numberings

dc.contributor.authorNikolay Bazhenov
dc.contributor.authorManat Mustafa
dc.contributor.authorSergei Ospichev
dc.date.accessioned2025-08-22T10:15:46Z
dc.date.available2025-08-22T10:15:46Z
dc.date.issued2022-02-01
dc.description.abstractThe paper works within the framework of punctual computability, which is focused on eliminating unbounded search from constructions in algebra and infinite combinatorics. We study punctual numberings , that is, uniform computations for families S of primitive recursive functions. The punctual reducibility between numberings is induced by primitive recursive functions. This approach gives rise to upper semilattices of degrees, which are called Rogers pr-semilattices . We show that any infinite, uniformly primitive recursive family S induces an infinite Rogers pr-semilattice R . We prove that the semilattice R does not have minimal elements, and every nontrivial interval inside R contains an infinite antichain. In addition, every non-greatest element from R is a part of an infinite antichain. We show that the $\Sigma_1$ -fragment of the theory Th ( R ) is decidable.en
dc.identifier.citationBazhenov Nikolay, Mustafa Manat, Ospichev Sergei. (2022). Rogers semilattices of punctual numberings. Mathematical Structures in Computer Science. https://doi.org/https://doi.org/10.1017/s0960129522000093en
dc.identifier.doi10.1017/s0960129522000093
dc.identifier.urihttps://doi.org/10.1017/s0960129522000093
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9905
dc.language.isoen
dc.publisherCambridge University Press (CUP)
dc.relation.ispartofMathematical Structures in Computer Scienceen
dc.rightsAll rights reserveden
dc.sourceMathematical Structures in Computer Science, (2022)en
dc.subjectSemilatticeen
dc.subjectAntichainen
dc.subjectMathematicsen
dc.subjectDecidabilityen
dc.subjectDiscrete mathematicsen
dc.subjectCombinatoricsen
dc.subjectAlgebra over a fielden
dc.subjectPartially ordered seten
dc.subjectPure mathematicsen
dc.subjectSemigroupen
dc.subjecttype of access: open accessen
dc.titleRogers semilattices of punctual numberingsen
dc.typearticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rogers_semilattices_of_punctual_numberings__224d96ae.pdf
Size:
421.68 KB
Format:
Adobe Portable Document Format

Collections