Accounting for a spatial trend in fine-scale ground-penetrating radar data: a comparative case study

dc.contributor.authorY. Dagasan
dc.contributor.authorO. Erten
dc.contributor.authorE. Topal
dc.date.accessioned2025-08-06T10:30:52Z
dc.date.available2025-08-06T10:30:52Z
dc.date.issued2018
dc.description.abstractIn geostatistics, one major challenge is addressing spatial trend effects in high‑resolution data. This study compares three kriging algorithms—ordinary kriging (OK), universal kriging (UK), and intrinsic random function of order k (IRF‑k)—applied to densely sampled ground‑penetrating radar (GPR) data over a laterite‑type bauxite deposit. Structural variogram modeling and cross‑validation were performed to assess predictive accuracy. Although IRF‑k slightly outperformed the others, all methods yielded similar and satisfactory estimates: mean squared error (MSE) values were 0.1267 for IRF‑k, 0.1322 for OK, and 0.1349 for UK. The high performance uniformity is attributed to the dense GPR dataset and chosen kriging neighborhood parameters
dc.identifier.citationDagasan, Y., Erten, O. & Topal, E. (2018). Accounting for a spatial trend in fine-scale ground-penetrating radar data: a comparative case study. Journal of the Southern African Institute of Mining and Metallurgy, 118(2), 173–184. DOI: 10.17159/2411-9717/2018/v118n2a11
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9093
dc.language.isoen
dc.subjectground-penetrating radar
dc.subjectgeostatistics
dc.subjectnonstationarity
dc.subjectuniversal kriging
dc.subjectordinary kriging
dc.subjectintrinsic random function of order k SciELO Nazarbayev University
dc.titleAccounting for a spatial trend in fine-scale ground-penetrating radar data: a comparative case study
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
85047943778.0_10.171592411-97172018v118n2a11.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format

Collections