Lithofacies uncertainty modeling in a siliciclastic reservoir setting by incorporating geological contacts and seismic information
Loading...
Date
2018-08-14
Authors
Madani, Nasser
Naderi, Asghar
Biranvand, Bijan
Keshavarz, Nasser
Journal Title
Journal ISSN
Volume Title
Publisher
Journal of Petroleum Exploration and Production Technology
Abstract
Deterministic modeling lonely provides a unique boundary layout, depending on the geological interpretation or interpolation
from the hard available data. Changing the interpreter’s attitude or interpolation parameters leads to displacing the
location of these borders. In contrary, probabilistic modeling of geological domains such as lithofacies is a critical aspect
to providing information to take proper decision in the case of evaluation of oil reservoirs parameters, that is, applicable
for quantification of uncertainty along the boundaries. These stochastic modeling manifests itself dramatically beyond this
occasion. Conventional approaches of probabilistic modeling (object and pixel-based) mostly suffers from consideration
of contact knowledge on the simulated domains. Plurigaussian simulation algorithm, in contrast, allows reproducing the
complex transitions among the lithofacies domains and has found wide acceptance for modeling petroleum reservoirs.
Stationary assumption for this framework has implications on the homogeneous characterization of the lithofacies. In this
case, the proportion is assumed constant and the covariance function as a typical feature of spatial continuity depends only
on the Euclidean distances between two points. But, whenever there exists a heterogeneity phenomenon in the region, this
assumption does not urge model to generate the desired variability of the underlying proportion of facies over the domain.
Geophysical attributes as a secondary variable in this place, plays an important role for generation of the realistic contact
relationship between the simulated categories. In this paper, a hierarchical plurigaussian simulation approach is used to construct
multiple realizations of lithofacies by incorporating the acoustic impedance as soft data through an oil reservoir in Iran.
Description
Keywords
Plurigaussian simulation, Acoustic impedance, Hierarchical flag
Citation
Madani, N., Naderi, A., Biranvand, B., Keshavarz, N. (2018). “Lithofacies uncertainty modeling in a siliciclastic reservoir setting by incorporating geological contacts and seismic information”. Journal of Petroleum Exploration and Production Technology, DOI: 10.1007/s13202-018-0531-7. In press.