Heat transfer through hydrogenated graphene superlattice nanoribbons: a computational study

dc.contributor.authorDehaghani Maryam Zarghami
dc.contributor.authorHabibzadeh Sajjad
dc.contributor.authorFarzadian Omid
dc.contributor.authorKostas Konstantinos V.
dc.contributor.authorSaeb Mohammad Reza
dc.contributor.authorSpitas Christos
dc.contributor.authorMashhadzadeh Amin Hamed
dc.date.accessioned2025-08-27T04:54:26Z
dc.date.available2025-08-27T04:54:26Z
dc.date.issued2022-05-13
dc.description.abstractOptimization of thermal conductivity of nanomaterials enables the fabrication of tailor-made nanodevices for thermoelectric applications. Superlattice nanostructures are correspondingly introduced to minimize the thermal conductivity of nanomaterials. Herein we computationally estimate the effect of total length and superlattice period ( $$l_{p}$$ l p ) on the thermal conductivity of graphene/graphane superlattice nanoribbons using molecular dynamics simulation. The intrinsic thermal conductivity ( $$\kappa_{\infty }$$ κ ∞ ) is demonstrated to be dependent on $$l_{p}$$ l p . The $$\kappa_{\infty }$$ κ ∞ of the superlattice, nanoribbons decreased by approximately 96% and 88% compared to that of pristine graphene and graphane, respectively. By modifying the overall length of the developed structure, we identified the ballistic-diffusive transition regime at 120 nm. Further study of the superlattice periods yielded a minimal thermal conductivity value of 144 W m −1 k −1 at $$l_{p}$$ l p = 3.4 nm. This superlattice characteristic is connected to the phonon coherent length, specifically, the length of the turning point at which the wave-like behavior of phonons starts to dominate the particle-like behavior. Our results highlight a roadmap for thermal conductivity value control via appropriate adjustments of the superlattice period.en
dc.identifier.citationDehaghani Maryam Zarghami; Habibzadeh Sajjad; Farzadian Omid; Kostas Konstantinos V.; Saeb Mohammad Reza; Spitas Christos; Mashhadzadeh Amin Hamed. (2022). Heat transfer through hydrogenated graphene superlattice nanoribbons: a computational study. Scientific Reports. https://doi.org/10.1038/s41598-022-12168-7en
dc.identifier.doi10.1038/s41598-022-12168-7
dc.identifier.urihttps://doi.org/10.1038/s41598-022-12168-7
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/10412
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.rightsAll rights reserveden
dc.source(2022)en
dc.titleHeat transfer through hydrogenated graphene superlattice nanoribbons: a computational studyen
dc.typearticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1038_s41598-022-12168-7.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format

Collections