DSpace Repository

3D PRINTING OF BIOCOMPATIBLE CRYOGELS FOR BONE TISSUE ENGINEERING

Система будет остановлена для регулярного обслуживания. Пожалуйста, сохраните рабочие данные и выйдите из системы.

Show simple item record

dc.contributor.author Moazzam, Muhammad
dc.date.accessioned 2023-06-13T08:42:43Z
dc.date.available 2023-06-13T08:42:43Z
dc.date.issued 2023
dc.identifier.citation Moazzam, M. (2023). 3d printing of biocompatible cryogels for bone tissue engineering. School of Engineering and Digital Sciences en_US
dc.identifier.uri http://nur.nu.edu.kz/handle/123456789/7217
dc.description.abstract Natural biopolymers are highly valued and commonly utilized in tissue engineering to create scaffolds that support living cells. This is due to their exceptional biocompatibility and the fact that their degradation rate can be controlled. However, the shape and average pore size are crucial in biological processes that influence the kinetics of cell proliferation and tissue regeneration processes linked to the production of extracellular matrix. For the construction of high-accuracy hydrogel scaffolds via 3D printing, the shear thinning characteristics of the bioinks used frequently result in morphological compromises like smaller pore diameters. Here, we introduced a new mixture of gelatin and oxidized alginate (Gel/OxAlg) that has been optimized for use in 3D printing and cryogelation techniques. This composite formulation allows for the creation of highly porous and biocompatible hydrogel scaffolds with extra-large pore sizes (d > 100 μm) using a combination of 3D printing and cryogelation techniques. These scaffolds have the potential to serve as a platform for various tissue engineering applications, and their morphological properties and cell viability data can be tailored accordingly. Overall, our approach offers a simple and cost-effective method for constructing hydrogel scaffolds with high accuracy. en_US
dc.language.iso en en_US
dc.publisher School of Engineering and Digital Sciences en_US
dc.rights Attribution-NonCommercial-ShareAlike 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/us/ *
dc.subject Type of access: Open Access en_US
dc.subject 3d printing en_US
dc.subject biocompatible cryogels en_US
dc.subject bone tissue engineering en_US
dc.title 3D PRINTING OF BIOCOMPATIBLE CRYOGELS FOR BONE TISSUE ENGINEERING en_US
dc.type Master's thesis en_US
workflow.import.source science


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States