DSpace Repository

HEAT TRANSFER THROUGH HYDROGENATED GRAPHENE SUPERLATTICE NANORIBBONS: A COMPUTATIONAL STUDY

Система будет остановлена для регулярного обслуживания. Пожалуйста, сохраните рабочие данные и выйдите из системы.

Show simple item record

dc.contributor.author Dehaghani, Maryam Zarghami
dc.contributor.author Habibzadeh, Sajjad
dc.contributor.author Farzadian, Omid
dc.contributor.author Kostas, Konstantinos V.
dc.contributor.author Saeb, Mohammad Reza
dc.contributor.author Spitas, Christos
dc.contributor.author Mashhadzadeh, Amin Hamed
dc.date.accessioned 2023-02-17T09:28:31Z
dc.date.available 2023-02-17T09:28:31Z
dc.date.issued 2022
dc.identifier.citation Dehaghani, M. Z., Habibzadeh, S., Farzadian, O., Kostas, K. V., Saeb, M. R., Spitas, C., & Mashhadzadeh, A. H. (2022). Heat transfer through hydrogenated graphene superlattice nanoribbons: a computational study. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-12168-7 en_US
dc.identifier.uri http://nur.nu.edu.kz/handle/123456789/6959
dc.description.abstract Optimization of thermal conductivity of nanomaterials enables the fabrication of tailor-made nanodevices for thermoelectric applications. Superlattice nanostructures are correspondingly introduced to minimize the thermal conductivity of nanomaterials. Herein we computationally estimate the effect of total length and superlattice period ( lp ) on the thermal conductivity of graphene/ graphane superlattice nanoribbons using molecular dynamics simulation. The intrinsic thermal conductivity ( ) is demonstrated to be dependent on lp . The of the superlattice, nanoribbons decreased by approximately 96% and 88% compared to that of pristine graphene and graphane, respectively. By modifying the overall length of the developed structure, we identified the ballisticdiffusive transition regime at 120 nm. Further study of the superlattice periods yielded a minimal thermal conductivity value of 144 W m− 1 k− 1 at lp = 3.4 nm. This superlattice characteristic is connected to the phonon coherent length, specifically, the length of the turning point at which the wave-like behavior of phonons starts to dominate the particle-like behavior. Our results highlight a roadmap for thermal conductivity value control via appropriate adjustments of the superlattice period. en_US
dc.language.iso en en_US
dc.publisher Scientific Reports en_US
dc.rights Attribution-NonCommercial-ShareAlike 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/us/ *
dc.subject Type of access: Open Access en_US
dc.subject hydrogenated graphene superlattice nanoribbons en_US
dc.subject Heat transfer en_US
dc.title HEAT TRANSFER THROUGH HYDROGENATED GRAPHENE SUPERLATTICE NANORIBBONS: A COMPUTATIONAL STUDY en_US
dc.type Article en_US
workflow.import.source science


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States