DSpace Repository

Effect of Initial Wettability on Performance of Smart Water Flooding in Carbonate Reservoirs—An Experimental Investigation with IOR Implications

Show simple item record

dc.contributor.author Al-Nofli, Kholood
dc.contributor.author Pourafshary, Peyman
dc.contributor.author Mosavat, Nader
dc.contributor.author Shafiei, Ali
dc.date.accessioned 2019-04-27T10:24:29Z
dc.date.available 2019-04-27T10:24:29Z
dc.date.issued 2018-05-30
dc.identifier.citation Al-Nofli, K.; Pourafshary, P.; Mosavat, N.; Shafiei, A. Effect of Initial Wettability on Performance of Smart Water Flooding in Carbonate Reservoirs—An Experimental Investigation with IOR Implications. Energies 2018, 11, 1394. en_US
dc.identifier.uri http://dx.doi.org/10.3390/en11061394
dc.identifier.uri http://nur.nu.edu.kz/handle/123456789/3864
dc.description.abstract In this paper, the effects of salinity and active ions on wettability alteration in carbonate reservoirs with different initial wettability conditions with implications in smart water flood design, optimization, and performance analysis are experimentally investigated. Contact angle measurement was used as the main tool to study the alteration in wettability. Other analytical techniques such as pH measurements along with energy-dispersive X-ray spectroscopy (EDS) were used to support the analysis. Initial wettability of the tested carbonate samples ranges from strongly water wet to preferentially water wet, neutral wet, oil wet, and strongly oil wet (5 cases or groups) condition. Four different synthetic brines, namely high salinity (Hsal), low salinity (Lsal), and smart waters 1 and 2 (SW1 = a Mg brine, and SW2 = a Mg and sulfate brine) were prepared and used by adjusting the salinity and ion concentration to study their effects on wettability alteration. Low-salinity brine (Lsal) proved to be more effective than high-salinity brine (Hsal) for the wettability alteration of calcite surfaces at intermediate (neutral) or oil-wet conditions. The smart brine containing only the Mg2+ ion (SW1) was able to alter the wettability of calcite surfaces in intermediate or oil-wet states. The sulfate ion played a catalytic role in wettability alteration by the magnesium ion, and the process was faster, as indicated by higher wettability alteration index values. High-salinity brine (Hsal) is a good choice for design of water floods in reservoir rocks with initial wettability in the range of strongly water wet to neutral wet conditions. In the wettability alteration process of oil-wet samples, brine with a high magnesium ion concentration was slower than brine containing high concentrations of both magnesium and sulfate ions. This can be attributed to the catalytic role of the sulfate ion compared to that of the magnesium ion. Finally, the results showed that the initial wettability of the reservoir rock plays a major role in design of a proper water flood to maximize oil recovery from carbonate reservoirs. The results obtained from this research work suggests that some effective smart water flooding scenarios can be developed and executed incorporating different smart brines to manage the reservoir rock wettability and maximize the oil recovery from carbonate oil reservoirs. en_US
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.rights Attribution-NonCommercial-ShareAlike 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/us/ *
dc.subject low-salinity water flooding en_US
dc.subject smart water flooding en_US
dc.subject wettability en_US
dc.subject multi ion exchange en_US
dc.subject wettability alteration en_US
dc.subject carbonate reservoirs en_US
dc.subject improved oil recovery en_US
dc.title Effect of Initial Wettability on Performance of Smart Water Flooding in Carbonate Reservoirs—An Experimental Investigation with IOR Implications en_US
dc.type Article en_US
workflow.import.source science


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States

Video Guide

Submission guideSubmission guide

Submit your materials for publication to

NU Repository Drive

Browse

My Account

Statistics