DSpace Repository

Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study

Show simple item record

dc.contributor.author Asle Zaeem, M.
dc.contributor.author El Kadiri, H.
dc.contributor.author Horstemeyer, M.F.
dc.contributor.author Khafizov, M.
dc.contributor.author Utegulov, Z.
dc.creator M., Asle Zaeem
dc.date.accessioned 2017-12-22T06:18:32Z
dc.date.available 2017-12-22T06:18:32Z
dc.date.issued 2012-03-01
dc.identifier DOI:10.1016/j.cap.2011.09.004
dc.identifier.citation M. Asle Zaeem, H. El Kadiri, M.F. Horstemeyer, M. Khafizov, Z. Utegulov, Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study, In Current Applied Physics, Volume 12, Issue 2, 2012, Pages 570-580 en_US
dc.identifier.issn 15671739
dc.identifier.uri https://www.sciencedirect.com/science/article/pii/S1567173911004676
dc.identifier.uri http://nur.nu.edu.kz/handle/123456789/3039
dc.description.abstract Abstract Phase stability, topology and size evolution of precipitates are important factors in determining the mechanical properties of crystalline materials. In this article, the Cahn–Hilliard type of phase-field model was coupled to elasticity equations within a mixed-order Galerkin finite element framework to study the coarsening morphology of coherent precipitates. The effects of capillarity, particle size and fraction, compositional strain, and inhomogeneous elasticity on the kinetics and kinematics of coherent precipitates in a binary dual phase crystal admitting a third intermediate stable/meta-stable phase were investigated. The results demonstrated the ability of the model to simulate coarsening under the concomitant action of Ostwald ripening and mismatch elastic strain mechanisms. Using a phenomenological coarsening power law, coarsening rates were determined to depend on precipitate size and volume fraction, compositional strain, and strain mismatch between precipitates and the matrix. Results also showed that the necking incubation time between two neighboring precipitates depends inversely on the precipitate’s initial sizes; however, under fixed volume fraction of precipitates, any increase in the initial sizes of the precipitates mitigates the coarsening. Meanwhile, the compositional strain and the growth of the intermediate stable/meta-stable phase leads to substantial enhancements of precipitate coarsening. en_US
dc.language.iso en en_US
dc.publisher Current Applied Physics en_US
dc.relation.ispartof Current Applied Physics
dc.subject Cahn–Hilliard phase-field model en_US
dc.subject Coherent precipitates en_US
dc.subject Coarsening en_US
dc.subject Compositional strain en_US
dc.subject Intermediate phase en_US
dc.subject Finite element en_US
dc.title Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study en_US
dc.type Article en_US
dc.rights.license Copyright © 2011 Elsevier B.V. All rights reserved.
elsevier.identifier.doi 10.1016/j.cap.2011.09.004
elsevier.identifier.eid 1-s2.0-S1567173911004676
elsevier.identifier.pii S1567-1739(11)00467-6
elsevier.identifier.scopusid 81155139635
elsevier.volume 12
elsevier.issue.identifier 2
elsevier.coverdate 2012-03-01
elsevier.coverdisplaydate March 2012
elsevier.startingpage 570
elsevier.endingpage 580
elsevier.openaccess 0
elsevier.openaccessarticle false
elsevier.openarchivearticle false
elsevier.teaser Phase stability, topology and size evolution of precipitates are important factors in determining the mechanical properties of crystalline materials. In this article, the Cahn–Hilliard type of phase-field...
elsevier.aggregationtype Journal
workflow.import.source science


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record