DSpace Repository

Craters on silicon surfaces created by gas cluster ion impacts

Show simple item record

dc.contributor.author Allen, L. P.
dc.contributor.author Insepov, Z.
dc.contributor.author Fenner, D. B.
dc.contributor.author Santeufemio, C.
dc.contributor.author Brooks, W.
dc.contributor.author Jones, K. S.
dc.contributor.author Yamada, I.
dc.date.accessioned 2017-09-27T10:14:43Z
dc.date.available 2017-09-27T10:14:43Z
dc.date.issued 2002
dc.identifier.citation Allen, L. P., Insepov, Z., Fenner, D. B., Santeufemio, C., Brooks, W., Jones, K. S., & Yamada, I. (2002). Craters on silicon surfaces created by gas cluster ion impacts. Journal of applied physics, 92(7), 3671-3678. ru_RU
dc.identifier.uri http://nur.nu.edu.kz/handle/123456789/2734
dc.description.abstract Atomic force microscopy ~AFM! and high-resolution transmission electron microscope ~HRTEM! cross section imaging of individual gas cluster ion impact craters on Si~100! and Si~111! substrate surfaces is examined. The comparison between 3 and 24 kV cluster impacts from Ar and O2 gas sources is shown. Results for low fluence (1010 ions/cm2) 24 kV Ar individual cluster impacts onto a Si~100! and Si~111! substrate surfaces are compared with hybrid molecular dynamics ~HMD! simulations. A HMD method is used for modeling impacts of Arn (n5135, 225! clusters, with energies of 24–50 eV/atom, on Si~100! and Si~111! surfaces. On a Si~100!, craters are nearly triangular in cross section, with the facets directed along the close-packed ~111! planes. The Si~100! craters exhibit four-fold symmetry as imaged by cross-sectional HRTEM, and AFM top view, in agreement with modeling. In contrast, the shape of craters on a Si~111! shows a complicated six-pointed shape in the modeling, while AFM indicates three-fold symmetry of the impact. The lower energy 3 kV individual cluster impacts reveal the same crater shape in HRTEM cross section for both Ar and O2 gas clusters, but with shallower crater depth than for the higher-energy impacts. The kinetics of the Ar and O2 crater impacts may explain the successful use of higher-energy cluster impacts for etching material of higher initial surface roughness followed by the lower energy impacts as an effective finishing step to achieve smoother surfaces. ru_RU
dc.language.iso en ru_RU
dc.publisher Journal of applied physics ru_RU
dc.rights Open Access - the content is available to the general public ru_RU
dc.rights Attribution-NonCommercial-ShareAlike 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/us/ *
dc.title Craters on silicon surfaces created by gas cluster ion impacts ru_RU
dc.type Article ru_RU


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Open Access - the content is available to the general public Except where otherwise noted, this item's license is described as Open Access - the content is available to the general public

Video Guide

Submission guideSubmission guide

Submit your materials for publication to

NU Repository Drive

Browse

My Account

Statistics