02. Master's Thesis
Permanent URI for this collection
Browse
Browsing 02. Master's Thesis by Subject "AOP"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Embargo CHARACTERIZATION AND PERFORMANCE ASSESSMENT OF A NOVEL NIO-FE3O4-POLYTHIOPHENE NANOCOMPOSITE FOR ASPHALTENE PRECIPITATION INHIBITION(Nazarbayev University School of Mining and Geosciences, 2024-04-19) Serikbay, MardanPrecipitation and deposition of asphaltene represents a significant challenge in the oil industry. Nanomaterials are considered as proper candidates for asphaltene adsorption and precipitation owing to their exceptional physical and chemical features. In this dissertation, first, a novel NiO-Fe3O4-Polythiophene nanocomposite (NC) was characterized using various advanced analytical methods to ensure its authenticity. X-ray diffraction (XRD) was used to determine the crystallite size and explore structures of the NC. Scanning electron microscopy (SEM) was used to investigate surface morphology and assess the particle size of the NC qualitatively. Fourier transform infrared spectroscopy (FTIR) methods was used to identify functional groups and elemental bonding of the NC. Brunauer-Emmett-Teller (BET) method was used to determine surface area of the NC. Thermogravimetric analyzer (TGA) was used to explore thermal stability of the NC. Using the XRD data the crystallite size was determined 33.2 nm. The particle size of the NC ranges from 60 to 400 nm based on SEM images, and surface area of the NC was determined 55.83 m2/g using the BET test data. TGA analysis revealed that the NC is thermally stable with a negligible mass loss under reservoir conditions (80°C). To assess efficacy of the novel NC for adsorption and inhibition of asphaltene, UV-spectroscopy technique was used to determine Asphaltene Onset Point (AOP) in presence and absence of the NC and then supernatant obtained from TGA analysis was used for adsorption kinetics isotherm modeling. Adsorption kinetics isotherm modeling was done using the Langmuir (R2 = 0.98) and Freundlich (R2 = 0.95) isotherm models. The experimental data matched well both models which suggests monolayer and multilayer adsorption behavior for adsorption of asphaltene onto the surface of the NC. A maximum adsorption capacity of 1.116 mg/m2 was obtained for the NC. TGA analysis confirmed that oxidation of virgin asphaltene started at around 400-450℃; while oxidation of 5,000 ppm sample with NC started at around 350℃. The NC has catalyzed oxidation of the asphaltene. An optimum NC concentration of 0.3 wt% was obtained and an AOP shifting from 40% to 48% volume of n-heptane was observed for the optimum concentration. The outcomes prove that, the novel NC is an effective nano-inhibitor for asphaltene under laboratory conditions.Item Embargo CHARACTERIZATION AND PERFORMANCE ASSESSMENT OF SIO2-KCL-XANTHAN NANOCOMPOSITE AS A NOVEL NANO-ASPHALTENE PRECIPITATION INHIBITOR UNDER LABORATORY CONDITIONS(Nazarbayev University School of Mining and Geosciences, 2024-04-18) Kaliolla, KemelkhanIn this experimental research work, efficiency of SiO2-KCl-Xanthan nanocomposite (NC) as a nano-inhibitor for adsorption and removal of asphaltene from a synthetic crude oil medium was investigated. The NC has been used as an EOR and smart drilling fluid agent with impressive results. This was the motivation behind this research work. The first phase of the research involved extraction of asphaltene from a West Kazakhstani heavy crude oil and characterization of both asphaltene and the NC. Different state of the art analytical techniques including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller or BET, X-ray diffraction (XRD), and thermogravimetric or TGA were used for NC. This was to ensure authenticity and functionality of the NC. The NC has a spherical structure with particle sizes ranging from 30 to 300 nm determined using SEM analysis. The crystallite size was calculated 41 nm using the XRD data. The surface area of the NC was determined 31.95 m2/g using the BET method. TGA analysis showed that the NC did not experience any significant mass loss for a typical reservoir temperature (80°C) and it is thermally stable for oilfield applications. Based on the FTIR spectra, presence of organic functional groups of phytochemicals on the NC was identified indicting successful synthesis of the NC. The last stage was to assess the efficiency of the nano-inhibitor by determining the Asphaltene Onset Point (AOP) using UV-vis spectroscopy technique and asphaltene adsorption kinetics isotherm modeling using the supernatant obtained from TGA analysis. TGA analysis confirmed that oxidation of virgin asphaltene started at around 400 to 450℃. While, oxidation of 5,000 ppm sample with NC started at around 280℃. The NC has catalyzed oxidation of the asphaltene. Adsorption kinetics isotherm modeling was done using the Langmuir (R2 = 0.98) and Freundlich (R2 = 0.82) isotherm models. The experimental data matched well both models, which suggests monolayer and multilayer adsorption behavior for adsorption of asphaltene onto the surface of the NC. A maximum adsorption capacity of 1.33 mg/m2 was obtained for the NC. The novel nano-inhibitor shifted the AOP by 5% and the optimum concentration of NC was determined 0.3 wt%. Overall, the NC showed promising inhibitory performance under laboratory conditions.