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Refinement of the experimental energy levels of higher 2D Rydberg states
of the lithium atom with very accurate quantum mechanical calculations
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Very accurate variational non-relativistic calculations are performed for four higher Rydberg 2 D
states (1s2nd1, n = 8, . . . , 11) of the lithium atom (7Li). The wave functions of the states are ex-
panded in terms of all-electron explicitly correlated Gaussian functions and finite nuclear mass is
used. The exponential parameters of the Gaussians are optimized using the variational method with
the aid of the analytical energy gradient determined with respect to those parameters. The results of
the calculations allow for refining the experimental energy levels determined with respect to the 2S
1s22s1 ground state. © 2011 American Institute of Physics. [doi:10.1063/1.3591836]

I. INTRODUCTION

The NIST atomic spectra database1 lists ten 2 D states
among the 182 states of the lithium atom. These states cor-
respond to the Rydberg electron configurations 1s2nd, where
n = 3, 4, . . . , 12. An examination of the relative energies of
these states reveals that higher Rydberg states of these sys-
tems, as well as their isotopes and ions, have been measured
much less precisely than the lower lying states. For example,
while for the lowest four 2 D states of 7Li (the 1s23d1, 1s24d1,
1s25d1, and 1s26d1 states) the relative energies with respect
to the ground 2S 1s22s1 state are reported with the precision
of two significant digits after the decimal point (in wave num-
bers), the higher states (the 1s27d1, 1s28d1, and 1s29d1 states)
are reported with only one significant digit after the point,
and the highest states (the 1s210d1, 1s211d1, and 1s212d1

states) are reported with no digits after the point. Also, the
2 D 1s212d1 state is the highest for which the energy level is
given. It is equal to 42 725 cm−1.

Recently we presented a set of very high-level calcula-
tions performed for the lowest five 2 D of the 7Li atom where
the relative nonrelativistic energies of those states were con-
verged with the accuracy better than 0.01 cm−1.2 In the calcu-
lations we employed all-electron explicitly correlated Gaus-
sian functions and optimized their exponential parameters
with a variational approach that employs the analytical energy
gradient determined with respect to those parameters. 4 000
Gaussians were used for each state.

The gradient-aided optimization has been key to obtain
very accurate results in our calculations performed with
various types of explicitly correlated Gaussian basis func-
tions for a number of atomic and molecular systems.3–9

The algorithms for calculating the energy and the energy
gradient used in the 7Li 2 D-state calculations,2 as well as
in the present calculations, were presented in our previous
works.10–12 They have been derived using a non-relativistic
Hamiltonian that explicitly depends on the mass of the
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nucleus. This Hamiltonian, called the internal Hamiltonian,
Ĥint , is obtained by rigorously separating the kinetic energy
of the center-of-mass motion from the laboratory-frame
Hamiltonian. Ĥint has the following form in atomic units:
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where n is the number of electrons, ri is the distance be-
tween the i th electron and the nucleus, m0 is the nucleus
mass (12 786.3933me for 7Li and 10 961.898me for 6Li,
where me = 1 is the electron mass), q0 is its charge, qi are
electron charges, and μi = m0mi/ (m0 + mi ) are electron
reduced masses. The Hamiltonian [Eq. (1)] describes the
motion of n (pseudo)electrons, whose masses are the reduced
masses, in the central field of the nuclear charge. This
motion is coupled through the Coulombic interactions,∑n
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indicates the matrix/vector transpose).
As Ĥint is explicitly dependent on the mass of the nu-

cleus, it allows for direct calculation of energy levels of a par-
ticular isotope without resorting to accounting for the finite
mass of the nucleus using the perturbation approach. Such
perturbation calculations are performed in the commonly used
approach after the initial nonrelativistic calculation is done
with the mass of the nucleus set to infinity. The finite-nuclear-
mass calculation in this work are performed for the 6Li and
7Li isotopes. We have also performed infinite-nuclear-mass
calculations by setting the mass of the nucleus in Eq. (1) to
infinity.
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II. THE REFINING PROCEDURE

Very accurate quantum mechanical calculations of the
ground and excited states of small atoms have always pro-
vided grounds for fruitful interplay between the experiment
and theoretical calculations. They make possible the testing
of new theoretical approaches for very accurate atomic calcu-
lations. However, the calculations we recently performed on
the five lowest Rydberg 2 D states of the 7Li atom 2 opens an-
other possible way of the theoretical/experimental interaction.
It involves refining the experimentally obtained energy levels
of high Rydberg states of small atoms with the theoretical cal-
culations. Such refining was suggested in the work concern-
ing the lowest five 2 D states of the 7Li atom.2 In that work
we showed that, when the excitation level increases from the
lowest 2 D 1s23d2 state to the fourth 1s26d2 state, the energy
difference between the experimental and the calculated en-
ergy converges to a constant value of −2.58 cm−1. As the dif-
ference is clearly due to not including in the calculations the
relativistic and QED effects, its constant value indicates that
these effects become virtually identical as the level of excita-
tion in the Rydberg series increases. An unexpected deviation
from the −2.58 cm−1 limit appears for the fifth 1s2 7d1 state.
This deviation happens not because the energy of this state
is less tightly converged in the calculations, but because the
experimental value is not as accurate as for the lower states.
Recall that this experimental value is given with only one sig-
nificant figure after the decimal point.1

Another interesting observation can be made by the anal-
ysis of the calculated and the experimental energy differences
(or transition energies) between adjacent 2 D states. As the
excitation level increases the calculated energy differences
converge almost exactly to the experimental energy differ-
ences. From the calculations, the differences are: 5340.27,
2471.54, and 1342.39 cm−1 for the transitions between the
1s23d1 ← 1s24d1, 1s24d1 ← 1s25d1, and 1s25d1 ← 1s26d1

states, respectively, and from the experiment they are 5340.30,
2471.55, and 1342.38 cm−11. Based on this trend and taking
into account that the calculated transitions are converged to
the level better than 0.01 cm−1, one would expect that for the
1s26d1 ← 1s27d1 transition the experiment and the calcula-
tion should give virtually the same transition energies, but this
again does not happen because the experiment is not precise
enough.

The above results allowed for refinement of the ex-
perimental energy of the 1s27d1 state reported as 41 246.5
cm−1 in Ref. 1. This is done by taking the experimen-
tal energy of the 1s26d1 state of 40 437.31 cm−1 and
adding to it our calculated, very well-converged, 1s27d1-
1s26d1 energy difference of 809.33 cm−1.2 Due to a
negligible contribution of the relativistic and QED effects,
the energy value of 41 246.64 cm−1 obtained this way
should be more accurate than the experimental value of
41 246.5 cm−1.1 In the present work the refining procedure is
applied to the energy levels of the 1s28d1, 1s29d1, 1s210d1,
and 1s211d1 2 D Rydberg states of 7Li. The experimental
energies of these states are reported as 41 771.3, 42 131.3,
42 389 and 42 578 cm−1,1 respectively. As it takes significant
effort to achieve tight enough convergence of the calcula-

tions for high Rydberg states to be used in the refinement,
considerable computational resources have been employed
in the present calculations. Besides 7Li we have also cal-
culated the energies of the corresponding 2 D states of 6Li
and ∞Li. The calculation for the latter system were done to
provide a reference for the conventional calculations done
with a fixed nucleus.

III. BASIS SET AND ITS OPTIMIZATION

The basis set of explicitly correlated Gaussians used in
this work to describe the 2 D states of the Li atom has the
following form:12

φk = (xik x jk + y jk yik − 2zik z jk ) exp[−r′(Ak ⊗ I3)r], (2)

where electron labels ik and jk are either equal or not equal
to each other and can vary from 1 to n. Ak in Eq. (2) is an
n × n symmetric matrix, ⊗ is the Kronecker product, I3 is a
3 × 3 identity matrix, and r is a 3n vector of the electron co-
ordinates. To assure that the Gaussians [Eq. (2)] are square
integrable – this happens when the Ak matrix is positive def-
inite – we use the following Cholesky factored form of Ak :
Ak = Lk L ′

k , where Lk is a lower triangular matrix with matrix
elements ranging from ∞ to −∞. With that, Ak is automat-
ically positive definite and the Gaussian is square integrable.
Also the variational minimization of the energy, if it is done
with respect to the Lk parameters, can be carried out without
any constraints.

We use the spin-free formalism to implement to correct
permutational symmetry of the wave function. In this formal-
ism, one constructs a symmetry projector acting on the spatial
parts of the wave function to enforce the desired symmetry
properties. The construction can be done using the standard
procedure involving Young operators as described, for exam-
ple, in Ref. 13. For 2 D states of lithium, the Young operator
can be chosen as: Ŷ=(1̂ + P̂34)(1̂ − P̂23), where the nucleus
is labeled as 1, and the electrons are labeled as 2, 3, and 4, 1̂
is the identity operator, and P̂i j is the permutation of the i th
and j th electron labels. As the internal Hamiltonian [Eq. (1)]
is fully symmetric with respect to all electron permutations,
in the calculation of the overlap and Hamiltonian matrix el-
ements, Ŷ may be applied to the ket basis functions only (as
Ŷ †Ŷ ).

The basis set for each of the four states considered in
this work has been optimized separately. The optimization
involved minimization of the variational energy functional
in terms of the Lk parameters and the ik and jk indices of
the Gaussians. As before, the analytical gradient has been
employed in the minimization. A more detailed description
of the procedure can be found in our previous works.2, 12 The
basis set optimization have been only performed for the 7Li
states. In the 6Li and ∞Li calculations we only readjusted
the linear expansion coefficients of the wave function in
terms of the Gaussians (through the diagonalization of the
Hamiltonian/overlap matrix).
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TABLE I. The convergence of the total variational nonrelativistic finite-nuclear-mass energies (in hartrees) of the 1s27d1, 1s28d1, 1s29d1, 1s210d1, and
1s211d12 D states of 7Li with the number of the Gaussian basis functions. The 6Li and ∞Li energies are also shown for the largest basis set of Gaussians used
for the particular.

Basis 1s27d1 1s28d1 1s29d1 1s210d1 1s211d1

7Li 2500 −7.289 530 047 16 −7.287 136 416 89 −7.285 494 619 23 −7.284 316 321 71 −7.283 431 377 49
3000 −7.289 530 114 13 −7.287 136 759 19 −7.285 495 308 73 −7.284 318 710 52 −7.283 438 066 11
3500 −7.289 530 142 67 −7.287 136 888 58 −7.285 495 777 44 −7.284 320 229 54 −7.283 444 693 31
4000 −7.289 530 165 34 −7.287 136 955 73 −7.285 496 027 21 −7.284 321 216 56 −7.283 448 518 87
4500 −7.289 530 175 47 −7.287 136 992 14 −7.285 496 180 65 −7.284 321 866 40 −7.283 450 758 38
5000 −7.287 137 013 90 −7.285 496 265 89 −7.284 322 271 47 −7.283 452 070 90
5500 −7.287 137 027 21 −7.285 496 323 31 −7.284 322 501 61 −7.283 452 874 54
6000 −7.287 137 036 58 −7.285 496 359 46 −7.284 322 641 12 −7.283 453 426 08
6500 −7.287 137 042 83 −7.285 496 385 62 −7.284 322 738 45 −7.283 453 824 34
7000 −7.285 496 404 42 −7.284 322 808 00 −7.283 454 092 25

6Li −7.289 431 539 04 −7.287 038 437 52 −7.285 397 820 45 −7.284 224 239 28 −7.283 355 534 82
∞Li −7.290 122 866 37 −7.287 729 546 68 −7.286 088 778 00 −7.284 915 091 83 −7.284 046 308 13

TABLE II. Energies (in cm−1) of the 1s28d1, 1s29d1, 1s210d1, and 1s211d12 D states of 7Li determined with respect to the ground 2 S (1s22s1) state and
their comparison with the experimental energies. The comparison also includes the results for the 1s25d1, 1s26d1, and 1s27d1 states taken from Ref. 2. Only
the results of the calculations performed with the largest basis set used for each state are shown.

1s25d1 1s26d1 1s27d1 1s28d1 1s29d1 1s210d1 1s211d1 1s2∞d1b

7Li Calculateda 39 092.35 40 434.73 41 244.04 41 769.29 42 129.41 42 386.96 42 577.64 43 484.60
Experiment1 39 094.93 40 437.31 41 246.5 41 771.3 42 131.3 42 389. 42 578. 43 487.15
�c −2.58 −2.58 (−2.5 ) (−2.0 ) (−1.9 ) (−2.0) (0.0) −2.55

6Li Calculateda 39 091.80 40 434.17 41 243.48 41 768.71 42 128.78 42 386.35 42 577.01 43 484.00
∞Li Calculateda 39 095.62 40 438.12 41 247.50 41 772.78 42 132.88 42 390.48 42 581.15 43 488.22

aCalculated relative to the ground 1s22s1 state of Li. E(7Li) = −7.477 451 930 7 hartree, E(6Li) = −7.477 350 681 2 hartree, and E(∞Li) = −7.478 060 323 8 hartree.
bEnergy difference between the ground 1s22s1 state of Li and the ground 1s2 state of Li+. E(7Li+) = −7.279 321 519 72, E(6Li+) = −7.279 223 016 09, and E(∞Li+)
= −7.279 913 412 58 hartree (from Ref. 12).
cCalculated energy difference minus experimental energy difference.

TABLE III. Energy differences (in cm−1) between the 1s27d1, 1s28d1, 1s29d1, 1s210d1, and 1s211d12 D states and the 1s26d1 2 D state of 7Li, 6Li, and
∞Li. For 7Li we show the convergence of the differences with the basis set size. For 6Li and ∞Li we only show the results obtained with the largest basis set
used for each state. For 7Li the results of the calculations are compared with the experimental values.

Basis 1s26d1 − 1s27d1 1s26d1 − 1s28d1 1s26d1 − 1s29d1 1s26d1 − 1s210d1 1s26d1 − 1s211d1

7Li 2500 809.35 1334.69 1695.02 1953.63 2147.85
3000 809.34 1334.62 1694.87 1953.11 2146.39
3500 809.33 1334.59 1694.77 1952.78 2144.93
4000 809.33 1334.58 1694.72 1952.56 2144.10
4500 809.33 1334.57 1694.69 1952.42 2143.60
5000 1334.56 1694.67 1952.33 2143.32
5500 1334.56 1694.65 1952.28 2143.14
6000 1334.56 1694.65 1952.25 2143.02
6500 1334.56 1694.64 1952.23 2142.93
7000 1694.64 1952.21 2142.87
Experiment1 809.2 1334.0 1694.0 1952.0 2141.0

6Li 809.32 1334.54 1694.61 1952.19 2142.84
∞Li 809.39 1334.66 1694.77 1952.36 2143.04
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TABLE IV. Energies (in cm−1) of the 1s27d1, 1s28d1, 1s29d1, 1s210d1,
and 1s211d12 D states of 7Li obtained by adding the best values of the cal-
culated 1s2nd1 − 1s26d1 (n = 7, . . . , 11) energy differences to the experi-
mental energy of the 1s26d1 state of 40 437.31 cm−1. Rough estimates of
the errors of the calculated energies are given in parentheses.

State Calculation Experiment

1s27d1 41 246.64(1) 41 246.5
1s28d1 41 771.87(1) 41 771.3
1s29d1 42 131.95(2) 42 131.3
1s210d1 42 389.52(10) 42 389.0
1s211d1 42 580.18(30) 42 578.0

IV. RESULTS

While it was sufficient to use 4 000 Gaussians in the
basis set to achieve the sub 0.01 cm−1 convergence of the
transition energies for the five lowest 2 D Rydberg states
of 7Li, in the calculations of higher members of the series
more basis functions are needed to achieve the satisfactory
convergence of the energy. As it is shown in Table I, it takes
6 000 Gaussians to have eight digits in the energy of the
1s28d1 state converge, but even with 7 000 Gaussians the
seventh digit of the energy of the 1s211d1 state is not quite yet
converged. In Table I we also show the energies for 6Li and
∞Li obtained with the basis sets generated for 7Li without
reoptimization of the Gaussian exponential parameters.

The energies from Table I obtained with the largest basis
set generated for each state are used to determine the rela-
tive energies with respect to the ground 1s22s1 state shown in
Table II. The comparison of these energies with the 7Li exper-
imental values1 shows that (as mentioned above), where those
latter values are available with the accuracy of two significant
figures after the decimal point, the calculated/experimental
difference is constant and equal to −2.58 cm−1. This differ-
ence (see Table II) is, as one can expect, very close to the dif-
ference between the calculated and experimental ionization
energies of 7Li of −2.55 cm−1. In the table, the ground 1s2

state of 7Li+ is called 1s2∞d1 for consistency. The reason
the value of the difference is not exactly equal to −2.58 cm−1

can be related to the relativistic and QED effects in the 1s2nd1

states not being quite yet constant with the n value at n = 11.
In order for the refinement procedure to work, the en-

ergy difference between the 1s26d1 state (the highest state for
which the experimental energy is determined with two signif-
icant digits after the decimal point) and the 1s2nd1, where n
> 6, has to be well converged. This convergence is shown in
Table III. As one can see, while the values of the difference
for the n = 7, 8, and 9 states are essentially converged, the

convergence for the next state (n = 10) is within 0.03-0.10
cm−1 and for the n = 11 state it is about 0.1–0.3 cm−1.
Clearly, more basis functions are needed to fully converge the
energy for this last state. Though it is doable, at present it ex-
ceeds the practical limits of our computational capabilities.

The (1s2nd1-1s26d1) energy differences obtained with
the largest basis sets generated for particular states, along with
the experimental energy of the 1s26d1 state and the above-
described refinement procedure are used to generate the es-
timates for the energies of the 1s2nd1, n = 7, . . . , 11, states.
These estimates are compared with the experimental values
in Table IV. Based on the convergence patterns we assigned
to each energy a rough estimate of the error. The comparison
allows us to claim that the refined values of the state energies
are more accurate than the experimental counterparts.

V. SUMMARY

In conclusion, it should be noted that at present time the
above refinement procedure can only be applied to higher
Rydberg states where the relativistic and QED contributions
to the transition energies between the considered states are
negligible. Also, the procedure assumes that relatively high
Rydberg state is experimentally very accurately determined
(in our case it is the 1s26d1 state for the 2 D Rydberg series
of the 7Li atom). The same procedure can also be applied to
determine the energies of states not yet experimentally mea-
sured such as the 1s2nd1 2 D Rydberg states of 7Li for n > 12.
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6M. Stanke, J. Komasa, D. Kȩdziera, S. Bubin, and L. Adamowicz, Phys.
Rev. A 77, 062509 (2008).

7S. Bubin, J. Komasa, M. Stanke, and L. Adamowicz, Phys. Rev. A 81,
052504 (2010).

8S. Bubin and L. Adamowicz, Phys. Rev. A 79, 022501 (2009).
9S. Bubin, M. Stanke, and L. Adamowicz, J. Chem. Phys. 131, 044128
(2009).

10K. L. Sharkey, M. Pavanello, S. Bubin , and L. Adamowicz, Phys. Rev. A
80, 062510 (2009).

11K. L. Sharkey, S. Bubin, and L. Adamowicz, J. Chem. Phys. 132, 184106
(2010).

12K. L. Sharkey, S. Bubin, and L. Adamowicz, J. Chem. Phys. 134, 044120
(2011).

13M. Hamermesh, Group Theory and Its Application to Physical Problems
(Addison-Wesley, Reading, MA, 1962).

Downloaded 11 Apr 2012 to 129.59.117.186. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://physics.nist.gov/asd
http://dx.doi.org/10.1103/PhysRevA.83.012506
http://dx.doi.org/10.1103/PhysRevLett.99.043001
http://dx.doi.org/10.1063/1.3275804
http://dx.doi.org/10.1103/PhysRevA.80.022514
http://dx.doi.org/10.1103/PhysRevA.77.062509
http://dx.doi.org/10.1103/PhysRevA.77.062509
http://dx.doi.org/10.1103/PhysRevA.81.052504
http://dx.doi.org/10.1103/PhysRevA.79.022501
http://dx.doi.org/10.1063/1.3195061
http://dx.doi.org/10.1103/PhysRevA.80.062510
http://dx.doi.org/10.1063/1.3419931
http://dx.doi.org/10.1063/1.3523348

