FINITE ELEMENT ANALYSIS OF THE CFRP-BASED 3D PRINTED ANKLE-FOOT ORTHOSIS

Loading...
Thumbnail Image

Date

2021

Authors

Ali, Md. Hazrat
Smagulov, Zhalgas
Otepbergenov, Temirlan

Journal Title

Journal ISSN

Volume Title

Publisher

Procedia Computer Science

Abstract

The application of the 3D printing and additive manufacturing in making medical devices have become widespread in the last decades as the opportunity of the technology is rapidly growing. Notably, the Fused Deposition Modeling (FDM) in 3D printing technique has been applied to develop the ankle-foot orthosis (AFO) with different materials and composites. This paper presents a new design and simulation results of a novel orthosis using Carbon Fiber Reinforced Polymer (CFRP). The orthosis for ankle foot is designed for rehabilitation of the patient from the foot drop disease. The orthosis’ shape is modelled to support the backside of the calf. It contributes to the maintenance of the gait cycle. In this paper, two different models of the AFO are compared, namely articulated and non-articulated. The finite-element analysis is done using the ANSYS software, and the results for equivalent Von Mises stress as well as total deformation are observed and analyzed. Various materials are applied during the numerical analysis, as well as their combinations are tested

Description

Keywords

Type of access: Open Access, Ankle-foot orthosis, 3D printing, Finite-element analysis

Citation

Ali, M. H., Smagulov, Z., & Otepbergenov, T. (2021). Finite element analysis of the CFRP-based 3D printed ankle-foot orthosis. Procedia Computer Science, 179, 55–62. https://doi.org/10.1016/j.procs.2020.12.008

Collections