Nanometer size hole fabrication in 2d ultrathin films with cluster ion beams

Loading...
Thumbnail Image

Date

2017-07-24

Authors

Ainabayev, A.
Kirkpatrick, S.
Walsh, M.
Vyatkin, A. F.
Insepov, Z.

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics Inc.

Abstract

Gas cluster ion beams are proposed as a new tool for producing nanometer sized holes in ultrathin 2D films. Surfaces of films of graphene, graphene oxide, MoS2, and HOPG, and also silicon as a reference, were irradiated by Ar gas cluster ion beams (Exogenesis Corporation, Billerica, MA USA). The results were analyzed using atomic force microscopy (AFM) and Raman spectroscopy. Ar gas cluster ion acceleration energy was 30 keV and total ion fluences ranged from 1108 to 11013 cm-2. Uniformly distributed holes, typically in the range of 10 to 25 nanometers in diameter, produced by the cluster ions, were observed on the surface of graphene oxide. To the best of our knowledge, this is first experimental observation of such holes

Description

Keywords

Citation

Insepov, Z., Ainabayev, A., Kirkpatrick, S., Walsh, M., & Vyatkin, A. F. (2017). Nanometer size hole fabrication in 2d ultrathin films with cluster ion beams. AIP Advances, 7(7), [075014]. https://doi.org/10.1063/1.4996185

Collections