Zhang, YongguangBakenov, ZhumabayTan, TaizheHuang, Jin2019-04-252019-04-252018-08-02Zhang, Y.; Bakenov, Z.; Tan, T.; Huang, J. Polyacrylonitrile-Nanofiber-Based Gel Polymer Electrolyte for Novel Aqueous Sodium-Ion Battery Based on a Na4Mn9O18 Cathode and Zn Metal Anode. Polymers 2018, 10, 853.http://nur.nu.edu.kz/handle/123456789/3862A gel polymer electrolyte was formed by trapping an optimized Na+/Zn2+ mixed-ion aqueous electrolyte in a polyacrylonitrile nanofiber polymer matrix. This electrolyte was used in a novel aqueous sodium-ion battery (ASIB) system, which was assembled by using a zinc anode and Na4Mn9O18 cathode. The nanorod-like Na4Mn9O18 was synthesized by a hydrothermal soft chemical reaction. The structural and morphological measurement confirmed that the highly crystalline Na4Mn9O18 nanorods are uniformly distributed. Electrochemical tests of Na4Mn9O18//Zn gel polymer battery demonstrated its high cycle stability along with a good rate of performance. The battery delivers an initial discharge capacity of 96 mAh g−1 , and 64 mAh g−1 after 200 cycles at a high cycling rate of 1 C. Our results demonstrate that the Na4Mn9O18//Zn gel polymer battery is a promising and safe high-performance battery.Attribution-NonCommercial-ShareAlike 3.0 United Statesaqueous sodium-ion batterycathodegel polymer electrolyteNa4Mn9O18 nanorodpolyacrylonitrile nanofiberPolyacrylonitrile-Nanofiber-Based Gel Polymer Electrolyte for Novel Aqueous Sodium-Ion Battery Based on a Na4Mn9O18 Cathode and Zn Metal AnodeArticle