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Abstract: Anti-Stokes photoluminescence (ASPL), which is an up-conversion phonon-assisted process
of the radiative recombination of photoexcited charge carriers, was investigated in methylammo-
nium lead bromide (MALB) perovskite nanocrystals (NCs) with mean sizes that varied from about
6 to 120 nm. The structure properties of the MALB NCs were investigated by means of the scanning
and transmission electron microscopy, X-ray diffraction and Raman spectroscopy. ASPL spectra of
MALB NCs were measured under near-resonant laser excitation with a photon energy of 2.33 eV
and they were compared with the results of the photoluminescence (PL) measurements under non-
resonant excitation at 3.06 eV to reveal a contribution of phonon-assisted processes in ASPL. MALB
NCs with a mean size of about 6 nm were found to demonstrate the most efficient ASPL, which is
explained by an enhanced contribution of the phonon absorption process during the photoexcitation
of small NCs. The obtained results can be useful for the application of nanocrystalline organometal
perovskites in optoelectronic and all-optical solid-state cooling devices.

Keywords: photoluminescence; anti-stokes; perovskites; methylammonium lead bromide; nanocrystals;
phonons

1. Introduction

It is known that materials with efficient phonon-assisted up-conversion photolumi-
nescence (PL) have potential applications in the field of the optical cooling of condensed
phase materials. The conversion of absorbed low-energy photons into high-energy photons
by a medium is called the light up-conversion process. This up-conversion process is also
called anti-Stokes photoluminescence (ASPL), which has been observed in various systems
spanning from atoms and molecules [1,2] to polymers [3,4], rare-earth doped materials [5,6],
organic dyes [7,8], carbon nanotubes [9], II-VI semiconducting nanobelts [10,11] and col-
loidal semiconductor nanocrystals (NCs) [12–14]. Up-conversion optical processes have
many applications including multi-color displays [15], dynamical imaging microscopy [16],
bio-imaging systems [17,18], unconventional lasers [19] and solid-state optical refrigeration
devices [20,21].

Due to their direct bandgap and large optical absorption, lead halide perovskite NCs
exhibit efficient PL with a high quantum yield (QY) which makes them an attractive
optoelectronic material [22]. NCs and films of organometal perovskites as methylammo-
nium lead halide (CH3NH3PbX3, where X = I, Br, Cl) have been explored for applica-
tions in such optoelectronics devices as solar cells, photodetectors, light-emitting devices
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and lasers [23–25]. A high QY is also required for the optical cooling application of per-
ovskites [20,26]. The ASPL process in perovskite NCs has been broadly studied over the
past decade [27,28]. ASPL was demonstrated in the NCs of all-inorganic perovskite as
CsPbX3 [28,29] and in organometal ones [30]. The optical cooling effect was investigated for
both the bulk and nanostructured perovskites [31,32]. The optical cooling in relatively large
perovskite NCs with sizes comparable with the optical wavelength can be enhanced by
coupling with Mie resonances [33]. The efficiency of ASPL optical cooling can be improved
by the size-tunable control of the absorption and the PL band of perovskite NCs due to
the quantum confinement [31]. Additionally, colloidal solutions and films of perovskite
NCs can be prepared by the inexpensive wet chemistry approach [34]. To the best of our
knowledge, size-dependent ASPL in methylammonium lead bromide (MALB) has been
insufficiently studied before, while such studies can be useful to assess the potential of
MALB NC for optical cooling and other photonic applications.

In this work, the size-dependent ASPL efficiency in MALB perovskite NCs excited by
photons with energies within the PL band is investigated. Sample PL properties are also
probed by excitations with photon energies exceeding the PL band. The obtained results
indicate a difference in ASPL processes in large and small NCs. In small NCs, enhanced
phonon-assisted light absorption promotes ASPL excitation.

2. Materials and Methods

Methylammonium bromide (CH3NH3Br), lead bromide (PbBr2), octylamine, dimethyl-
formamide, toluene, oleic acid and benzyl alcohol were acquired from Sigma-Aldrich
(Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany).

MALB nanocrystals were synthesized by the ligand-assisted reprecipitation (LARP)
technique [35]. In this colloidal chemistry method, the perovskite precursors dissolved
in “pro-solvent” were added into “anti-solvent” containing organic ligands such as octy-
lamine, oleic acid and benzyl alcohol [36]. The “anti-solvent” typically triggers perovskite
crystallization, while the organic ligands impede the crystal growth. According to this
method, 22.4 mg of CH3NH3Br and 73.4 mg of PbBr2 were dissolved in 1 mL of dimethyl-
formamide, resulting in a solvent solution containing MALB perovskite components. The
“anti-solvent” solution consists of 5 mL of toluene, 10–30 µL of octylamine, 1 mL of oleic
acid and 1 mL of benzyl alcohol. NC size was controlled by the octylamine concertation,
which was changed from 0.2 to 0.6%. A total of 150 µL of perovskite solution was injected
into this “anti-solvent” solution and was stirred for 5 min. The obtained NC suspension
was centrifuged for 10 min at 6000 rpm, which formed a supernatant (the top part of the
solution) and precipitate. The supernatant was discarded, and the precipitate was dispersed
in the mixture of 2 mL of toluene and 2 µL of octylamine. The obtained suspension was
subsequently centrifuged for 5 min at 8000 rpm. The precipitate was dispersed in 2 mL
of toluene. Both the supernatant and precipitate suspensions contained NCs and were
used in perovskite NC film preparations. NC thin film for spectroscopic investigations was
prepared by the drop casting of the MALB NC suspensions on a quartz substrate followed
by drying in air. The film thickness was controlled with the amount of the drop-casted
suspension and was about 1 micrometer.

The structural properties and morphology of the MALB NCs were characterized
by using a Crossbeam 540 (Carl Zeiss) scanning electron microscope (SEM) and a JEM-
1400 Plus (JEOL) transmission electron microscope (TEM) for the samples deposited on an
optically polished crystalline silicon wafer and carbon-coated gold grid, respectively. The
X-ray diffraction (XRD) patterns were collected by using a Radian-02 X-ray diffractometer
with a Cu-Kα radiation source.

A Raman confocal microscope Confotec MR350 (SOL Instruments) with continuum
wave (CW) 532 nm laser excitation was used to measure the ASPL and PL. The laser
incident intensity was 1 kW/cm2. Additionally, non-resonant excitation by LED at 405 nm
with an intensity of 0.1 kW/cm2 was used. The PL and ASPL spectra were detected with
a grating MS 3504i monochromator equipped with an Andor iStar 340T intensified CCD
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detector. For suppressing 532 nm of excitation light, a Bragg grating notch filter centered at
532 nm (with spectral windows of 4 nm) was placed in the entrance of the monochromator.
Non-resonant PL measurements were carried out with the same filter. All the measurements
were conducted at room temperature in air.

3. Results and Discussion

According to the SEM and TEM data (Figure 1), the synthesized MALB NCs were
characterized by their cubic shape and average lateral sizes of 5.5 ± 1.5, 46 ± 4 and
120 ± 2 nm for the samples obtained with different concentrations of octylamine. The
measured size distributions are typical for the perovskite NCs obtained by the LARP
technique because of the spontaneous NC growth [35,36]. The larger the concentration of
octylamine, the smaller the size of the NCs, as shown in Table 1.
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Figure 1. (a–c) SEM images of MALB perovskite NCs of series L (a), M (b) and S (c); (d–f) TEM
images for the samples of series L (d), M (e) and S (f) with corresponding size distributions shown in
insets where red lines are lognormal fits.

Table 1. Prepared series of MALB NCs with different mean sizes and PL band wavelengths according
to the TEM data and PL measurements under non-resonant excitation, respectively.

Series of Samples Octylamine, % NCs Mean Size, nm PL Wavelength, nm

S (small NCs) 0.6 5.5 ± 1.5 515 ± 1
M (medium NCs) 0.4 46.0 ± 4.0 534 ± 1

L (large NCs) 0.2 120 ± 24 543 ± 1

The obtained XRD patterns (Figure 2) for the samples of the series of M and L demon-
strated sharp peaks inherent for the cubic MALB crystals [37]. While the pattern for the
NCs of the S series also exhibited features of the (100) and (200) atomic planes of the cubic
MALB lattice, the corresponding peaks were noticeably weaker and broadened. The latter
was obviously caused by the small NC size. Additional narrow peaks of the XRD signals
were also observed in the samples of series M and S at about 17◦, 25◦ and 29◦. These angles
can be related to the residual perovskite precursor PbBr2 [38]. Overlapping with these
precursors’ peaks can explain the observed shift in the (110) and (200) peaks in the samples
of series M and S. Thus, the XRD analysis confirms that the synthesized samples were
predominately composed of the cubic MALB NCs.
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Figure 2. XRD patterns of thin layers of MALB NCs of L series (black line), M (red line) and S (blue
line) deposited on quartz substrates.

Figure 3 shows typical Raman spectra of the prepared MALB NCs of all the series.
The spectra consisted of typical lines of MALB perovskites at ν1 = 322 cm–1, ν2 = 967 cm−1,
ν3 = 1478 cm–1, ν4 = 1581 cm–1 and ν5 = 2965 cm–1, which can be assigned to the MA+

rotation, C–N stretching, NH3
+ symmetric deformation, C–N stretching and CH3 symmetric

stretching modes, respectively, [39] as summarized in Table 2. Besides the Raman lines of
MALB, the spectra exhibited lines at 1083, 1301, 1430 and 1655 cm–1, which can be related to
the vibration modes in oleic acid ligands [40,41]. While the MALB Raman peak intensities
decreased while the NC size decreased, the ligand-related peaks became more intensive.
This fact is explained by the increased surface-to-bulk ratio in the small MALB NCs that
resulted in a larger contribution of the residual ligands.

Figure 3. (a) Raman spectra of thin films of MALB NCs of L series (black line), M (red line) and
S (blue line), 50 nm and 130 nm in the spectral regions of 250–400 cm–1; (b) Raman spectra of the
same samples in the region of 900–3000 cm–1. Vertical dashed lines refer to vibration frequencies of
the MALB lattice.

Table 2. Vibrational mode assignment for the Raman spectrum of MALB perovskites.

Mode Notation Frequency, cm−1 (meV) Description

ν1 322 (40) MA rotation
ν2 967 (120) C–N stretching
ν3 1478 (183) NH3+ symmetric deformation
ν4 1581 (196) C–N twisting
ν5 2965 (368) CH3 symmetric stretching
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PL spectra of MALB NCs under 405 and 532 nm laser excitation are shown in Figure 4.
One can see that small NCs (S series) showed more intense ASPL emissions in comparison
with the NCs of the L series. The sample with 6 nm sized NCs exhibited the PL band shift
to the high energy region by ~0.1 eV compared to that for the samples of the L series. This
PL band shift to the high energy region is related to the quantum con�nement effect due to
the small size of the MALB NCs [ 42]. The observed PL spectra broadening is related to the
size distribution of the NCs and the electron–phonon interaction [43].

Figure 4. PL spectra for the samples L (black line), M (red line) and S (blue line) excited at 405 nm
(a) and 532 nm (b). The spectral dip at 532 nm was caused by the notch �lter.

Both the anti-Stokes and Stokes parts of MALB NCs PL had a nearly linear dependence
on excitation power, as shown in Figure 5. The linear dependence on excitation power
indicates a one-photon excitation process and is typical for NCs [ 12,44]. The observed non-
linear rise of the PL intensity of the M series samples at excitation intensity > 1 kW/cm 2 can
be related to a contribution of the bimolecular mechanism of charge carrier recombination
in interconnected MALB NCs [ 42]. This mechanism does not seem to be ef�cient in smaller
NCs because of a larger in�uence of the surface trapping and an additional enhancement
of the Auger recombination due to the breaking the phonon selection rules [43].

Figure 5. Dependences of the integrated PL intensities of the Stokes (solid symbols) and anti-Stokes
(open symbols) parts for series L (black symbols), M (red symbols) and S (blue symbols) on intensity
of the excitation at 532 nm. The corresponding linear �ts are plotted by solid and dashed lines for the
Stokes and anti-Stokes PL intensities, respectively.
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Figure 6 shows the ratio of the anti-Stokes and Stokes parts of the PL integral intensities
depending on the mean size of MALB NCs. The anti-Stokes and Stokes parts are calculated
as follows:

IAS =
Z l 0

l 1

IPL( l )dl , IS =
Z l 2

l 0

IPL( l )dl (1)

where l 1 = 499 nm, l 0 = 532 nm and l 2 = 577 nm, which are chosen according to the PL
measurement conditions.

Figure 6. Dependences of theIAS/ IS ration and intensity of the Raman signal on mean size of MALB NCs.

The Stokes part of the PL intensity was larger than the anti-Stokes one for the samples
of series L with the largest NCs. The samples of series M with medium sizes of NCs had
almost equal the Stokes and anti-Stokes parts of the PL spectra. The anti-Stokes part was
almost eight times larger than the Stokes one for the samples of series S with the smallest
NCs. The enhancement of ASPL in the latter series was correlated with the decrease in the
Raman intensity, as shown in Figure 6.

The phonon-assisted excitation process probability increased in the smaller NCs. This
can explain the high ASPL ef�ciency in the samples of the L series. In small semiconductor
NCs, the electron–phonon interaction can be more effective when the selection rules for
phonon-assisted optical transitions are violated [45].

When the photon energy in small MALB NCs is insuf�cient to generate an exciton
state, the lacking energy should be provided from phonons in order to realize the ASPL
excitation. The simultaneous absorption of one or more phonons followed by photon ab-
sorption can be related to the phonon contribution in ASPL. As it is known from the Raman
spectroscopy, MALB perovskites vibration modes include: the MA + rotation (� 1 =40 meV),
C-N (� 2 = 120 meV) and NH 3

+ symmetric breathing ( � 3 =183 meV). Under excitation
with 2.33 eV, all of these modes can contribute to the exciton generation. In the direct gap
semiconductors due to the quasi-momentum conservation, the ASPL process requires two
phonons to be absorbed. Therefore, in large MALB NCs, the two-phonon absorption can
be the main process of the ASPL excitation. In contrast, in small NCs, the selection rule
breaking also allows for optical transitions accompanied with one-phonon absorption. At
room temperature and high phonon energy, the latter seems to be more probable than
the two-phonon process due to both the temperature-dependent Bose–Einstein statistics,
which controls the population of the phonon states. Since the ASPL spectrum of the small
MALB NCs corresponds with the exciton energies of 2.43–2.55 eV, which are 100–200 meV
above the exciting photon energy, the ASPL excitation can be ef�ciently realized via the
one-phonon absorption for the phonon modes as � 2, � 3 and � 4 (see Table 2).

Figure 7a,b shows schematic representations of the energy diagrams for the ASPL ex-
citation and emission in large and small perovskite NCs, respectively. In large nanocrystals,
a photon can form an exciton without the contribution of phonons, since its energy is high
enough to excite an electron from the valence band to the exciton state. This exciton recom-
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bines with the energy nearby the exciting photon one and emits Stokes PL, while ASPL
can be excited due to either the simultaneous absorption of two phonons with zero total
quasi-momentum or it can be realized in a small NC fraction with exciton energies above
the exciting photon one. In small NCs, those band gaps that are below the exciting photon
energy of an exciton can be generated only because of an additional energy provided by
the phonons, and the one-phonon assisted light absorption is responsible for the ASPL
excitation, as shown schematically in Figure 7b.

Figure 7. Energy diagrams of the excitation, PL and ASPL in large ( a) and small (b) MALB NCs.

4. Conclusions

Size-dependent phonon-assisted anti-Stokes photoluminescence was observed in
MALB perovskite NCs under excitation within the PL band. The observed enhancement
of ASPL intensity upon reduction in the mean size of NCs can be explained by the strong
electron–phonon interaction promoting the simultaneous absorption of exciting photons
and phonons in smaller nanocrystals. Further details of the contribution of phonons to
the ASPL process in perovskite NCs can be obtained, for example, by using time-resolved
optical measurements.
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