DSpace Repository

Preparation and Supercooling Modification of Salt Hydrate Phase Change Materials Based on CaCl2 2H2O/CaCl2

Show simple item record

dc.contributor.author Xu, Xiaoxiao
dc.contributor.author Dong, Zhijun
dc.contributor.author Memon, Shazim Ali
dc.contributor.author Bao, Xiaohua
dc.contributor.author Cui, Hongzhi
dc.date.accessioned 2019-04-24T11:42:51Z
dc.date.available 2019-04-24T11:42:51Z
dc.date.issued 2017-06-23
dc.identifier.citation Xu, X.; Dong, Z.; Memon, S.A.; Bao, X.; Cui, H. Preparation and Supercooling Modification of Salt Hydrate Phase Change Materials Based on CaCl2·2H2O/CaCl2. Materials 2017, 10, 691. en_US
dc.identifier.uri http://dx.doi.org/10.3390/ma10070691
dc.identifier.uri http://nur.nu.edu.kz/handle/123456789/3831
dc.description.abstract Salt hydrates have issues of supercooling when they are utilized as phase change materials (PCMs). In this research, a new method was adopted to prepare a salt hydrate PCM (based on a mixture of calcium chloride dihydrate and calcium chloride anhydrous) as a novel PCM system to reduce the supercooling phenomenon existing in CaCl2 6H2O. Six samples with different compositions of CaCl2 were prepared. The relationship between the performance and the proportion of calcium chloride dihydrate (CaCl2 2H2O) and calcium chloride anhydrous (CaCl2) was also investigated. The supercooling degree of the final PCM reduced with the increase in volume of CaCl2 2H2O during its preparation. The PCM obtained with 66.21 wt % CaCl2 2H2O reduced the supercooling degree by about 96.8%. All six samples, whose ratio of CaCl2 2H2O to (CaCl2 plus CaCl2 2H2O) was 0%, 34.03%, 53.82%, 76.56%, 90.74%, and 100% respectively, showed relatively higher enthalpy (greater than 155.29 J/g), and have the possibility to be applied in buildings for thermal energy storage purposes. Hence, CaCl2 2H2O plays an important role in reducing supercooling and it can be helpful in adjusting the solidification enthalpy. Thereafter, the influence of adding different percentages of Nano-SiO2 (0.1 wt %, 0.3 wt %, 0.5 wt %) in reducing the supercooling degree of some PCM samples was investigated. The test results showed that the supercooling of the salt hydrate PCM in Samples 6 and 5 reduced to 0.2 C and 0.4 C respectively. Finally, the effect of the different cooling conditions, including frozen storage (􀀀20 C) and cold storage (5 C), that were used to prepare the salt hydrate PCM was considered. It was found that both cooling conditions are effective in reducing the supercooling degree of the salt hydrate PCM. With the synergistic action of the two materials, the performance and properties of the newly developed PCM systems were better especially in terms of reducing the supercooling degree of the PCM. The novel composite PCMs are promising candidates for thermal energy storage applications. en_US
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.rights Attribution-NonCommercial-ShareAlike 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/us/ *
dc.subject phase change materials en_US
dc.subject calcium chloride hexahydrate en_US
dc.subject supercooling en_US
dc.subject Nano-SiO2 en_US
dc.title Preparation and Supercooling Modification of Salt Hydrate Phase Change Materials Based on CaCl2 2H2O/CaCl2 en_US
dc.type Article en_US
workflow.import.source science


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States

Video Guide

Submission guideSubmission guide

Submit your materials for publication to

NU Repository Drive

Browse

My Account

Statistics