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Abstract. Let x = (x1, . . . , xd) ∈ [−1, 1]d be linearly independent over
Z, set K = {(ez, ex1z, ex2z . . . , exdz) : |z| ≤ 1}. We prove sharp estimates
for the growth of a polynomial of degree n, in terms of

En(x) := sup{‖P‖∆d+1 : P ∈ Pn(d + 1), ‖P‖K ≤ 1},
where ∆d+1 is the unit polydisk. For all x ∈ [−1, 1]d with linearly
independent entries, we have the lower estimate

logEn(x) ≥ nd+1

(d− 1)!(d + 1)
logn−O(nd+1);

for Diophantine x, we have

logEn(x) ≤ nd+1

(d− 1)!(d + 1)
logn + O(nd+1).

In particular, this estimate holds for almost all x with respect to Lebesgue
measure. The results here generalize those of [6] for d = 1, without re-
lying on estimates for best approximants of rational numbers which do
not hold in the vector-valued setting.

1. Introduction

For any ` ∈ N we let ∆` denote the unit polydisk

{z = (z1, z2, . . . , z`) ∈ C` : |zi| ≤ 1,∀i = 1, 2, . . . , `}.

For a given d ∈ N we consider a vector x = (x1, . . . , xd) ∈ [−1, 1]d and a
compact set

K = K(x) = {(ez, ex1z, ex2z . . . , exdz) : |z| ≤ 1}.

For any n, ` ∈ N we let Pn(`) denote the subspace of polynomials P ∈
C[z1, . . . , z`] of degree n. For any subset D ⊂ C` and polynomial P we
define ‖P‖D = {|P (z)| : z ∈ D}. We claim that ‖ · ‖K defines a norm only if
the set {1, x1, x2, . . . , xd} is linearly independent over Z, which is what we
will assume throughout the paper. See the beginning of the next section for
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the justification of the claim. For any n ∈ N we let

En(x) := sup{‖P‖∆d+1 : P ∈ Pn(d+ 1), ‖P‖K ≤ 1}.
From the equivalence of the norms ‖ · ‖∆d+1 and ‖ · ‖K we see (c.f. [5]) for
any z = (z0, z1, . . . , zd) ∈ Cd+1 that

(1) |P (z)| ≤ ‖P‖KEn(x) exp(n log+ max{|z0|, . . . , |zd|}).
Let en(x) = logEn(x). On Rd, we fix the maximum norm ‖ · ‖ given by
‖x‖ = max1≤`≤d |x`|. For any x ∈ R we let 〈x〉 denote the distance from x
to the nearest integer, that is, 〈x〉 = min{|x − k| : k ∈ Z}. We say that a
vector x ∈ Rd is Diophantine if there exist µ ≥ d and ε > 0 such that for
any q ∈ Zd\{0} we have 〈q · x〉 > ε‖q‖−µ. From Dirichlet’s approximation
theorem (see e.g. [9]) we know that there are no Diophantine vectors with
µ < d. For irrational x ∈ R the growth of the exponent en(x) was studied in
[6]. In particular, when d = 1, it was shown in [6, Corollary 1.3] that if x ∈ R
is Diophantine then the exponent en(x) grows like 1

2n
2 log n. Our goal in

this paper is to generalize this result for any d ∈ N. We note that Bernstein-
Walsh type inequalities on curves are much studied in the literature when
d = 1, see e.g. [1, 4, 5] and references therein. On the other hand, as pointed
out by [2] much less is known when d > 1 and one needs new techniques.
Using the existence of exponential polynomials in Pn(d + 1) with a zero of
order at least degPn − 1 we get the following.

Theorem 1.1. For any x ∈ Rd with {1, x1, . . . , xd} linearly independent
over Z we have

en(x) ≥ nd+1

(d− 1)!(d+ 1)
log n−O(nd+1),

where the implied constant depends on x and d only.

In [2] it was proved that for general exponential curves the exponent en(x) is

at most n3(d+1). However, in our situation we show that the upper estimate
for the exponent en(x) can be improved and this exponent is sharp for
generic x.

Theorem 1.2. If x ∈ [−1, 1]d is Diophantine then for any n ∈ N we have

(2) en(x) ≤ nd+1

(d− 1)!(d+ 1)
log n+O(nd+1),

where the implied constant depends on x and d only. In particular, (2) holds
for a.e. x ∈ [−1, 1]d.

To prove their result Coman and Poletsky make use of the well developed
theory of continued fractions in R. As there is no good analogue of continued
fractions theory in higher dimensions we will consider a different approach.

We say that a vector x = (x1, . . . , xd) ∈ Rd with {x1, . . . , xd} linearly inde-
pendent over Q is Liouville if it is not Diophantine, that is, for any n ∈ N
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there exists q ∈ Zd\{0} such that 〈q · x〉 < ‖q‖−n. Let Ld denote the set of
Liouville vectors in Rd. Let Wd(α) denote the set of vectors x ∈ Rd such that
there are infinitely many integer vectors q ∈ Zd satisfying 〈q · x〉 < ‖q‖−α.
It was proved in [3] that the Hausdorff dimension of Wd(α) is (d− 1) + d+1

1+α .

Since Ld = ∩α≥dWd(α), it follows that the Hausdorff dimension of Ld is at
most d− 1. In particular, Ld has zero Lebesgue measure which justifies the
last part of Theorem 1.2.

We note that for any nonzero q ∈ Zd the set {x ∈ Rd : q ·x = 0} is a hyper-
plane in Rd and is contained in Ld. Together with the above upper estimate
we get that the set Ld of Liouville d-vectors has Hausdorff dimension d− 1.

We now turn to discuss the exceptional set of points in Rd for which en(x)
grows faster than Cnd+1 log n. To this end, we define the set

W (d) =

{
x ∈ [−1, 1]d : lim sup

‖q‖→∞

− log〈q · x〉
‖q‖d+1 log ‖q‖

=∞

}
,

where q ∈ Zd≥0 := {(q1, . . . , qd) ∈ Zd : q1, . . . , qd ≥ 0}.

Theorem 1.3. For any x ∈W (d), lim supn
en(x)

nd+1 logn
=∞.

It is easy to see (e.g. from Theorem 1.2) that W (d) ⊂ Ld so that it has
Hausdorff dimension at most d− 1. In fact, we have

Theorem 1.4. Hausdorff dimension of the exceptional set W (d) is d− 1.

It was proved in [6] that when d = 1 the set of points x for which en(x)
grow faster than 1

2n
2 log n is uncountable. For d > 1, since the Hausdorff

dimension of W (d) is positive we in particular get that W (d) is uncountable.
Thus, for any d ∈ N the set of points x for which en(x) grow faster than

1
(d−1)!(d+1)n

d+1 log n is uncountable and has Hausdorff dimension d− 1.

In the next section we will prove Theorem 1.2 and in § 3 we obtain Theo-
rem 1.1, Theorem 1.3, and Theorem 1.4.

Acknowledgement. The authors are grateful to Dan Coman for useful
comments in the preliminary version of the paper.

2. Upper estimate

Before beginning with the main work, we prove the fact which allows us
to assert that ‖ · ‖K defines a norm only if {1, x1, x2, . . . , xd} are linearly
independent over Z, as claimed in the introduction. This follows from the
following lemma.

Lemma 2.1. Let y1, y2, . . . yl be distinct real numbers. Then ey1z, . . . eylz

are linearly independent over C.
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The proof of the lemma is left to the reader. We apply Lemma 2.1 to
an equation P (ez, ex1z, . . . exnz) = 0 for some polynomial P . The linear
independence of the xi’s implies that exponent coeffients in the expansion
will be distinct; using the lemma, we get that all the coefficients of P are 0.
The claim follows.

The remaining of the section is devoted to prove Theorem 1.2. We state [6,
Lemma 2.4]

Lemma 2.2. Let x, y ∈ Z with x ≤ y be given. For any α ∈ R we have

y∏
j=x

|j − α| ≥ 〈α〉
(
y − x

2e

)y−x
.

Let x ∈ Rd and n ∈ N be given. For any ` ∈ {0, 1, . . . , n} and m ∈ Zd with
m1, . . . ,md ∈ {0, 1, . . . , n} we define

(3) β(`,m) =
∏

j0+j1+···+jd≤n,(j0,j)6=(`,m)

((`− j0) + (m− j) · x),

where each j = (j1, . . . , jd) ∈ Zd has nonnegative components and also
j0 ≥ 0. We will need the following estimate.

Proposition 2.3. If x is Diophantine, then there exists a constant Cx,d > 0
such that

log |β(`,m)| ≥ 1

(d+ 1)!
nd+1 log n− Cx,dn

d+1.

To obtain the proposition we need the following lemmas. We set |j| =
j1 + · · ·+ jd. Arguing inductively on d it is easy to see that

Lemma 2.4. For any m ∈ N, the set
{
j ∈ Zd : |j| = m, j1, . . . , jd ≥ 0

}
has

cardinality C(m+ d− 1, d− 1) =

(
m+ d− 1
d− 1

)
.

Lemma 2.5. We have∫ n

1
(n− x)d−1x log x dx ≥ 1

d(d+ 1)
nd+1 log n− Cdnd+1.

Proof. We claim for any m, ` ≥ 1 that∫ n

1
(n− x)mx` log x dx ≥ m

`+ 1

[∫ n

1
(n− x)m−1x`+1 log x dx− nm+`+1

`+ 1

]
.

We first note from integration by parts that∫
x` log x dx =

x`+1

`+ 1
log x−

∫
x`

`+ 1
dx =

x`+1

`+ 1
log x− x`+1

(`+ 1)2
+ C.
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Now, using integration by parts again we obtain:

∫ n

1
(n− x)mx` log x dx = (n− x)m

(
x`+1

`+ 1
log x− x`+1

(`+ 1)2

) ∣∣n
1

+

∫ n

1
m(n− x)m−1

(
x`+1

`+ 1
log x− x`+1

(`+ 1)2

)
dx.

We note that (n − x)m−1x`+1 ≤ nm+` for x ∈ [1, n]. Thus, simplifying we
get∫ n

1
(n− x)mx` log x dx ≥ (n− 1)m

(`+ 1)2
+

m

`+ 1

∫ n

1

[
(n− x)m−1x`+1 log x− nm+`

`+ 1

]
dx

≥ m

`+ 1

[∫ n

1
(n− x)m−1x`+1 log x dx− nm+`+1

`+ 1

]
.

To prove the lemma we iterate the claim:∫ n

1
(n− x)d−1x log x dx ≥ d− 1

2

[∫ n

1
(n− x)d−2x2 log x dx− nd+1

2

]
≥ d− 1

2

[
d− 2

3

(∫ n

1
(n− x)d−3x3 log x dx− nd+1

3

)
− nd+1

2

]
≥ · · ·

≥ (d− 1)!

d!

∫ n

1
xd log x dx− C ′dnd+1

=
1

d(d+ 1)
nd+1 log n− Cdnd+1. �

We state without proof the following

Lemma 2.6. Let m < n be integers and f : [m,n]→ [0,∞) be a continuous
function with exactly one local maximum in [m,n] and f(m) = f(n) = 0.
Then, we have ∣∣∣∣∣

n∑
k=m

f(k)−
∫ n

m
f(x) dx

∣∣∣∣∣ ≤ max
m≤x≤n

f(x).

Proof of Proposition 2.3. We have

|β(`,m)| ≥
∏

|j|≤n, j6=m

n−|j|∏
j0=0

|(`− j0) + (m− j) · x|.
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Since x is Diophantine of order µ we may find some ε > 0 such that 〈q ·x〉 ≥
ε‖q‖−µ. Using Lemma 2.2 we get

|β(`,m)| ≥
∏

|j|≤n, j6=m

n−|j|−`∏
j=−`

|j − (m− j) · x|

≥
∏

|j|≤n, j6=m

(
n− |j|

2e

)n−|j|
〈(m− j) · x〉

≥
∏

|j|≤n, j6=m

(
n− |j|

2e

)n−|j| ∏
|j|≤n, j6=m

ε‖m− j‖−µ

=

 n∏
k=1

∏
|j|=n−k, j6=m

(
k

2e

)k ∏
|j|≤n, j6=m

ε‖m− j‖−µ
 .

We set

A :=

n∏
k=1

∏
|j|=n−k, j6=m

kk, B :=

n∏
k=1

∏
|j|=n−k, j6=m

(2e)−k, C :=
∏

|j|≤n, j6=m

ε‖m− j‖−µ.

We now estimate each of A,B,C separately. Since the set {j ∈ Zd : |j| ≤ n}
has cardinality at most (n+1)d and ‖m− j‖ ≤ n for any |j| ≤ n we get that

C =
∏

|j|≤n, j6=m

ε‖m− j‖−µ ≥
∏
|j|≤n

εn−µ ≥ ε(n+1)dn−µ(n+1)d ≥ ε(2n)dn−µ(2n)d .

Thus,

(4) logC ≥ −µ2dnd log n+ 2dnd log ε.

Using Lemma 2.4 together with the trivial bound we get

logA ≥

 n∑
k=1

∑
|j|=n−k

k log k

− n log n

=

(
n∑
k=1

(
n− k + d− 1

d− 1

)
k log k

)
− n log n

≥

(
1

(d− 1)!

n∑
k=1

(n− k)d−1k log k

)
− n log n.

It is easy to see that the function f : [1, n] → [0,∞) given by f(x) = (n −
x)d−1x log x satisfies Lemma 2.6 for d > 1. Thus, when d > 1, Lemma 2.5



BERNSTEIN-WALSH INEQUALITIES IN HIGHER DIMENSIONS 7

and Lemma 2.6 give

logA ≥ 1

(d− 1)!

(∫ n

1
(n− x)d−1x log x dx− max

1≤x≤n
f(x)

)
− n log n

≥ 1

(d− 1)!

(
1

d(d+ 1)
nd+1 log n− Cdnd+1 − nd log n

)
− n log n.

On the other hand, for d = 1, following [6], we use the estimate (c.f. [5,

Lemma 2.1])
∑n

k=1 k log k ≥ n2 logn
2 − n2

4 to obtain

logA ≥ 1

2
n2 log n− n2

4
− n log n.

Hence, for any d ≥ 1 it holds

(5) logA ≥ 1

(d+ 1)!
nd+1 log n− 3Cdn

d+1.

As for the estimating logB, we note that since C(n − k + d − 1, d − 1) ≤
nd−1

(d−1)! +O(nd−2) for any k ∈ [1, n] we get

(6) logB ≥ −
n∑
k=1

∑
|j|=n−k

k log(2e) = −
n∑
k=1

(
n− k + d− 1

d− 1

)
k log(2e)

≥ − 1

(d− 1)!
nd+1 −O(nd),

where the implied constant depends d only. Thus, combining (4), (5) and
(6) we arrive at

log |β(`,m)| > 1

(d+ 1)!
nd+1 log n− Cd,µ,εnd+1. �

Proof of Theorem 1.2. Let N = dimPn−1, so that N =

(
n+ d+ 1

n

)
−1.

Fix some P ∈ Pn with ‖P‖K ≤ 1. Define

P (z) =
∑

j0+j1+···+jd≤n
c(j0, j)z

j0
0 · · · z

jd
d and f(z) = P (ez, ex1z, . . . , exdz),

where j0, . . . , jd ≥ 0. Then,

f(z) =
∑

j0+j1+···+jd≤n
c(j0, j)e

(j0+j·x)z.

For any polynomial R(λ) =
∑m

j=0 cjλ
j we introduce the differential operator

DR = R

(
d

dz

)
=

m∑
j=0

cj
dj

dzj
.
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We note that for any a ∈ C we have

(7) DR(eaz) |z=0=
m∑
j=0

cja
j = R(a).

To estimate c(`,m) we set

R`,m(λ) =
∏

j0+j1+···+jd≤n,(j0,j)6=(`,m)

(λ− (j0 + j · x)) =
N∑
t=0

atλ
t.

For any λ ≥ 0 we have

N∑
t=0

|at|λt ≤
∏

j0+j1+···+jd≤n,(j0,j)6=(`,m)

(λ+ |j0 + j · x|) ≤ (λ+ n)N .

From (7) we note that

DR`,m
(e(j0+j·x)z) |z=0=

{
R`,m(`+ m · x) if (j0, j) = (`,m),

0 if (j0, j) 6= (`,m).

Thus,

DR`,m
(f(z)) |z=0= c(`,m)β(`,m)

where β is defined in (3).

On the other hand, using ‖P‖K ≤ 1 and Cauchy’s inequality we get

(8) |f (t)(0)| ≤ t! ≤ N t whenever t ≤ N.

This implies that∣∣DR`,m
(f(z)) |z=0

∣∣ =

∣∣∣∣∣
N∑
t=0

atf
(t)(0)

∣∣∣∣∣ ≤
N∑
t=0

|at|N t ≤ (N + n)N .

Therefore,

log(|c(`,m)β(`,m)|) ≤ N log(N + n).

Using Proposition 2.3 we obtain

log(|c(`,m)|) ≤ N log(N + n)− log |β(`,m)|

≤ N log(N + n)− 1

(d+ 1)!
nd+1 log n+ Cx,dn

d+1.

Since ‖P‖∆d ≤
∑
|c(j0, j)| ≤ (N + 1) max |c(j0, j)| we deduce that

en(x) ≤ N log(N + n)− 1

(d+ 1)!
nd+1 log n+ Cx,dn

d+1 + log(N + 1).

Finally, using

(9) N = C(n+ d+ 1, d+ 1)− 1 =
nd+1

(d+ 1)!
+O(nd)
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we obtain N log(N+n) ≤ N logN+O(N) = 1
d!n

d+1 log n+O(nd+1). Hence,

en(x) ≤ nd+1

(d− 1)!(d+ 1)
log n+O(nd+1). �

3. Lower estimate and Hausdorff dimension

We first start proving Theorem 1.1. It is essentially contained in the proof
of [5, Proposition 1.3] as pointed out by D. Coman and for completeness we
recall it here.

Proof of Theorem 1.1. Fix P ∈ Pn(d+1) with ord(P (ez, ex1z, . . . , exdz), 0) ≥
N . We have P 6≡ 0 implies P (ez, ex1z, . . . , exdz) 6≡ 0. We let f(z) =

1
‖P‖K P (ez, ex1z, . . . , exdz) so that ‖f‖∆1 = 1 then max|z|=r |f(z)| ≥ rN , r ≥
1. From (1) we get for any |z| = r

rN ≤ En(x) exp(n log+ max{|ez|, |ex1z|, . . . , |exdz|}) ≤ En(x)enC0r,

where C0 = max{1, ‖x‖}. Taking r = N/n we see that

N log
N

n
≤ en(x) + C0N.

Using (9) we have

N log
N

n
=

nd+1

(d− 1)!(d+ 1)
log n+O(nd log n),

which gives

en(x) ≥ nd+1

(d− 1)!(d+ 1)
log n−O(nd+1). �

Now we prove Thoerem 1.3 which provides us with the exceptional set of
points x that does not satisfy Theorem 1.2.

Proof of Theorem 1.3. Let x ∈W (d) and (q`)≥1 be a sequence satisfying

(10) C(`) =
− log〈q` · x〉
‖q`‖d+1 log ‖q`‖

→ ∞ as `→∞.

For a given ` ≥ 0 we let n = d‖q`‖ and p ∈ Z be such that 〈q`·x〉 = |q`·x−p|.
Since ‖x‖ ≤ 1 we see that |p| ≤ d‖q`‖. Then, the polynomial P given by

P (z0, z1, . . . , zd) = zp0 −
d∏
`=1

zq``

is in Pn(d + 1). Clearly, ‖P‖∆d+1 = 2. Using |1 − eξ| ≤ 2|ξ| for |ξ| ≤ 1 we
get

|P (ez, ex1z, . . . , exdz)| = |epz(1− e(q`·x−p)z)| ≤ 2en〈q` · x〉,
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whenever |z| ≤ 1. Therefore,

En(x) ≥ ‖P‖∆d+1/‖P‖K ≥ e−n
1

〈q` · x〉
.

So, using (10) we get

en(x) = logEn(x) ≥ C(`)‖q`‖d+1 log ‖q`‖ − n

= C(`)
(n
d

)d+1
log

n

d
− n.

Thus,

en(x)

nd+1 log n
≥ 1

dd+1
C(`)− 1

n
→∞ as `→∞. �

It remains to give the proof of Theorem 1.4.

Proof of Theorem 1.4. We will use ubiquitous systems introduced in [8] as
a method of computing Hausdorff dimension of lim-sup sets. We consider
the family R = {R(q) : q ∈ Zd≥0} where for any q ∈ Zd we set R(q) := {x ∈
Rd : q · x ∈ Z}. Let ψ : N → [0, 1] be a decreasing function converging to 0
at the infinity. Define

Λ(R;ψ) =
{
x ∈ [−1, 1]d : dist(x, R(q)) < ψ(‖q‖) for infinitely many R(q)

}
,

where dist(x, S) = infy∈S ‖x − y‖. For any such ψ, we will prove that the

Hausdorff dimension of Λ(R;ψ) is at least d − 1. Then, for ψ(n) = n−n
d+2

we will show that Λ(R;ψ) ⊂W (d) which will finish the proof.

Let Id denote the hypercube [−1
2 ,

1
2 ]d of unit length. It is well-known (see

e.g.[7]) that the family {R(q) : q ∈ Zd} is ubiquitous with respect to ρ(Q) :=
dQ−1−d logQ in the sense that∣∣∣∣∣∣Id\

⋃
1≤‖q‖≤N

B(R(q); δ(N))

∣∣∣∣∣∣→ 0 as N →∞,

B(R(q); δ) = {x ∈ Rd : dist(x, R(q)) < δ}. However, it is not clear if the
family R = {R(q) : q ∈ Zd≥0} is ubiquitous with respect to the same ρ.
However, for our purposes we do not need to try to optimize ρ. Simply
consider the constant function ρ ≡ 1, then for q = (0, . . . , 0, 1) we have Id ⊂
B(R(q); 1) so that R is ubiquitous w.r.t 1. Since γ := lim supQ→∞

log ρ(Q)
logψ(Q) =

0, it follows from [8, Theorem 1] that the Hausdorff dimension of Λ(R;ψ) is
at least dimR+ γ codimR = d− 1.

We now claim that Λ(R;ψ) ⊂W (d) when ψ(n) = n−n
d+2

. For x ∈ Λ(R;ψ)
let (q`)≥` denote the sequence such that dist(x, R(q`)) < ψ(‖q‖) and all
R(q`) are distinct. Then, for any q ∈ Zd we have q · x 6∈ Z which means
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{1, x1, x2, . . . , xd} is linearly independent over Z. Let y ∈ R(q`) be such
that ‖x− y‖ < ψ(‖q‖). We choose p ∈ Z with q` · y = p. Then,

〈q` · x〉 ≤ ‖q` · (x− y) + q` · y − p‖ ≤ ‖q`‖‖x− y‖ < ψ(‖q`‖).

Hence, x ∈W (d) as − log〈q`·x〉
‖q`‖d+1 log ‖q`‖

≥ ‖q`‖ and ‖q`‖ → ∞ with `→∞. �
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