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Abstract 

The development of a single pharmaceutical drug is a time- and resource-consuming 
process with a high likelihood of rejection. In recent years, the cost-effectiveness of a 
single drug has decreased drastically, as the criteria for passing has become more rigorous. 
A huge fraction of attrition rates is caused by the toxicity of chemical compounds. Recent 
findings in Machine Learning (ML) have revolutionized the drug toxicity prediction field, 
developing many model architectures and data representations. The faced challenges are 
different ways of representing the molecules’ chemical structure, as well as many different 
toxicity types. This study proposes a novel drug toxicity prediction framework. It uses 
several classification models, based on different data representations and different ways 
of combining their features. The evaluation of six different datasets with different toxicity 
types shows that choosing majority voting across all models can improve the ROC AUC 
score and accuracy. Using a single classification model to combine these datasets 
demonstrates that it is possible to achieve 84% accuracy on data with various toxicity 
types. The findings of this research provide insights into the application of ML in 
pharmaceutical research. Improving current methods of toxicity assessment can have a 
positive effect on the efficiency and cost-effectiveness of drug development. 
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Introduction 

The process of developing a single drug is very expencive, taking many years and billions 

of dollars. The efficiency of this process has been significantly declining over the decades, 

with the number of drugs developed per billion dollars decreasing from 50 in the 1950s 

to less than one today [1]. However, even with immense costs, there is a very high chance 

of rejection for potential drugs. Out of 10,000 potential drugs, only one manages to pass 

all the tests [2]. These tests usually include but are not limited to, assessing Absorption, 

Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties. In this case, toxicity 

can be defined as a "diverse array of adverse effects which are brought about through 

drug use at either therapeutic or non-therapeutic doses" [3]. Toxicity alone is reported to 

be responsible for an attrition rate of 33% [4], which indicates its pivotal role in drug 

development and makes it essential to test for. 

Recent discoveries in the Machine Learning (ML) field are revolutionizing drug 

discovery approaches. ML algorithms have already been applied in various domains of 

drug development, including drug design, biomarker identification, drug-target affinity 

prediction, and property prediction [5]. With the increasing number of available datasets, 

it is also possible to predict the toxicity of a molecule based only on its structure. One of 

the most common chemical structure representations is the Simplified Molecular-Input 

Line-Entry System (SMILES) [6]. However, while SMILES is a very detailed algorithm that 

does not loose a lot of information about chemical compounds, it is usually not used for 

ML models. Instead, it can be converted into more manageable formats, such as kernel 

matrices [7], feature matrices [8], graph representations [9], etc. These transformations 

improve the efficiency and scalability of ML algorithms in drug toxicity prediction, 

potentially leading to breakthroughs in pharmaceutical research. 

Recent advances in the Machine Learning field and the existing variety of chemical 

data representations allow for a great variety of classification model architectures. 

Previous works report using Support Vector Machines, Random Forests, K-nearest 

neighbors, Convolutional Neural Networks, Graph Neural Networks, etc. [10]. However, 



 

the optimal choice of a model depends not only on its individual performance but also on 

its synergy with the selected data representation. Different combinations of chemical 

representation and prediction algorithms can positively influence classification results. 

More recent approaches go one step further and utilize several classification models 

by combining their results to get more accurate predictions [11, 12]. The idea behind this 

approach is that representations based on different physicochemical properties of 

molecules can provide complementary information. By employing several classification 

models and combining their output, it is possible to surpass the performance of individual 

models in terms of accuracy. Figure 1-1 illustrates the complete approach of converting a 

set of molecules into several data representations, training a separate ML classification 

model for each of them, and combining their predictions. 

The complications of toxicity prediction stem from the existence of many toxicity 

types. Gola et al. state that toxicity is a "multi-factorial event with a plethora of possible 

responses" and that toxic response may result from many dose- and time-dependent 

chemical events [13]. Currently, there are several toxicity prediction datasets, with each 

of them describing hepatotoxicity [14], cardiotoxicity [15], oral toxicity [16], among 

others. Works covering several toxicity types tend to build a separate ML model for each. 

At this point, the possibility of creating a unified prediction model for several toxicity types 

is unclear. Therefore, our major contributions are as follows: 

12 

1. Implement several data representations, which do not lose information and are 

suitable for building ML classification models. 

2. Find the best-performing ML classification model for each data representation. 

3. Develop an ensemble approach for selected models that results in the best 

classification results. 

4. Analyze the possibility of classifying different toxicity types with a single model. 
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5. Create a classification framework for chemical compounds and study its 

performance on established datasets. 

 

Figure 1-1: Baseline classifier architecture. 

Section II discusses previous works on this topic and compares them to the proposed 

solution. Section III describes the complete architecture of the toxicity classifier and the 

methodology for its creation and evaluation. Section IV presents the obtained results and 

analyzes the performance of the created classifier. Section V summarizes all the findings, 

concludes this work, and proposes possible future work. 
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Chapter 2 

Related work 

2.1 Data Representations 

The SMILES representation of molecules can be successfully converted to other data 

representations using various algorithms. Cao et al. [7] use the number of contiguous 

substrings in each compound to create a kernel matrix. Their model achieves an accuracy 

between 76% and 91%, depending on the used dataset. Authors in [17, 18] use a graph-

based representation of compounds on several datasets, achieving ROC AUC score of 

Data Format 2 

Data Format 1 

Data Format N 

Model 2 

Model 1 

Model N 

Ensemble 
Results Output 

Data 
Representation 

Base Learning 
Model 

Molecules 

Dataset 



 

0.757 for the Tox21 dataset. The more common approach, however, is to convert SMILES 

into numerical data, such as feature matrices or molecular fingerprints, as proposed by 

Hirohara et al. [8]. Each symbol in SMILES is converted into a series of bits, where each bit 

corresponds to a specific property of a symbol: atom type, bond type, atom valence, etc. 

Chen, Cheong, and Siu implement the same approach, but the meaning of each allocated 

bit is slightly different [19]. The first approach achieves an AUC score of 0.813, while the 

second one shows an R-squared score of 0.619. Both used Tox21 as a training and testing 

dataset. 

2.2 Individual Approaches 

Different classification models are used in similar projects, with the model type being 

dependent on the SMILES representation type. Convolutional Neural Networks are often 

used for feature matrices and molecular fingerprints. Graph Neural Networks are used 

when the Graph representation is utilized. Other works also implement Support Vector 

Machines, Random Forests, etc. [7, 20]. 

In previous studies, the Tox21 Data Challenge is one of the most used datasets for 

developing toxicity prediction models. It contains a total of 8.5k compounds, split into 

groups that correspond to 12 targets. With this, the dataset has 12 binary classification 

tasks, where each compound is labeled as either toxic or non-toxic. The dataset, however, 

is not balanced, as non-toxic samples far outnumber the toxic ones. Other datasets, such 

as ClinTox and ToxB, show a better class ratio, with Clintox being perfectly balanced and 

ToxB having a ratio of 1:1.49. All three of these datasets can be obtained from 

MoleculeNet [18]. A large amount of datasets focus on a specific type of toxicity. The hERG 

Central dataset focuses on a "cardiac human Ether-à-go-go related gene (hERG) potassium 

channel" [15], which is an example of cardiotoxicity. Several datasets provide information 

about hepatotoxicity and liverinduced injuries [21, 22, 23]. Another dataset describes 

compounds obtained from Rat Acute Toxicity by Oral Exposure [16]. Table 2.1 illustrates 

several examples of toxicity prediction, along with their selected data representation and 
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ML models. While these approaches achieve good results, they all use only one data 

representation and model, and only a small number of works use several datasets. 

Table 2.1: Examples of classification/regression approaches on toxicity datasets. 

Source Dataset(s) Data Representation Model Results 

[7] 

DBPCAN 
NCTRER 
EPAFHM 
CPDBAS 

FDAMDD 

SMILES-based strings (1D) SVM 

0.950 

0.900 

0.739 

0.822 

0.840 

[8] Tox21 Feature Matrix (2D) 2D CNN 0.877 

[17] Tox21 Graph (3D) Graph CNN 0.757 

[20] Oral Acute 
Fingerprints & Descriptors 

(1D) 
RVM 0.679 

16 

2.3 Ensemble Approaches 

The basis for the ensemble framework has been provided by Ryu et al. in 2020 [11]. The 

authors used three data representations and three corresponding classification models to 

get the final prediction on the hERG dataset. This was later adapted by Karim et al. in 2021 

[12], where they used five data representations on several datasets. They do not use two-

dimensional data, such as molecular feature matrices. On top of that, QTox experiments 

with several datasets separately instead of trying to merge them, while DeepHIT does not 

use several datasets at all [11]. Gupta and Rana also proposed an ensemble approach 

using three separate models [24]. However, all models were trained on the same data 

representation, and the work discussed only one dataset. Table 2.2 summarizes different 

ensemble approaches. 

Table 2.2: Comparison of multi-model ensemble approaches. 

Source 
Data 

Representations 
Models 

Multiple 

Datasets? 

ARE Ensemble [24] Descriptors (1D) 

Decision Tree 

Ada Boost 

SVM 

No 

DeepHIT [11] 
Fingerprints (1D) 

Descriptors (1D) 

DNN 

DNN No 



 

Graph (3D) Graph CNN 

QTox [12] 

SMILES Vector (1D) 

Fingerprint Vector (1D) 

Fingerprints (1D) 

Descriptors (1D) 

Graph (3D) 

1D CNN 

1D CNN 

2D CNN 

2D CNN 

Graph CNN 

Yes 
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Chapter 3 

Methodology 

3.1 Datasets 

To test our framework for several types of toxicity, different datasets have to be selected. 

Using popular available frameworks, such as MoleculeNet and Therapeutics Data 

Commons (TDC), we made the choice based on data quality, completeness, and 

availability. The selection is also based on the prevalence of datasets in the existing 

literature. This allows for a more comprehensive comparison with prior research and 

analysis of results. Table 3.1 shows the final list of datasets that were included in this work. 

Each toxicity dataset should provide the two following groups of data: 

1. Structure Representation. A certain notation that represents the chemical structure 

of the molecule. Usually, datasets use SMILES notation due to its compactness, 

unambiguous representation, and information storage. 

2. Toxicity Label. Binary (e.g., toxic/non-toxic) markers indicate the toxicity level of 

corresponding molecules. Labels should be assigned based on experimental or 

computational studies. One dataset can provide several types of labels, depending 

on tested assays and toxicity types. 
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Such datasets vary in size and toxicity type, ranging from several hundred to hundreds 

of thousands of molecules tested for cardiotoxicity, hepatotoxicity, cytotoxicity, 



12 

Table 3.1: Toxicity Datasets Used in This Work. 

Dataset Size 
Obtained 

From 

Label 

Type 

Toxicity 

Type 

Tox21 ∼8500 MoleculeNet Binary 
Nuclear receptor signals & 

stress response indicators 

SIDER 1300 MoleculeNet Binary 
Various adverse drug 

reactions 

ClinTox 1484 MoleculeNet Binary 
Various clinical trial drug 

toxicity types 

hERG blockers 656 TDC Binary Cardiotoxicity 

hERG Karim 13446 TDC Binary Cardiotoxicity 

DILI 476 TDC Binary Hepatotoxicity 

Combined 26554 
Moleculenet 

& TDC 
Binary Various types 

acute toxicity, etc. 

ClinTox provides 1484 molecules that "were annotated as having failed for toxicity 

reasons during clinical trials" [25]. Each molecule has a binary toxic/non-toxic label, with 

the overwhelming majority of the molecules being toxic. 

The Drug-Induced Liver Injury (DILI) dataset is gathered from the U.S. FDA’s National 

Center for Toxicological Research [14]. It contains 475 molecules with binary labels, 

indicating whether they can cause a liver injury or not (hepatotoxicity). 

hERG Central is a large database of more than 300,000 molecules [15]. It provides two 

regression tasks (inhibition at 1µM and 10µM concentration) and one classification task. 

Binary classification labels show whether a molecule blocks the Human ether-à-go-go 

related gene (hERG). The original hERG Central dataset is quite unbalanced, having only 

5% of blocker molecules. Due to that, there exist more practical subsets by Karim et al. 

and Wang et al. that provide smaller but more balanced data [26, 27]. As shown in Figure 

3-1a, they have 450 overlapping molecules, which is 70% of the hERG blockers subset. 

Additionally, out of these 450 molecules, 16.4% have different labels. These differences 

make it reasonable to test these subsets separately instead of combining them. 

Tox21 was created in 2014 for a toxicity classification challenge as a collaboration 

between National Institute of Environmental Health Sciences (NIEHS) / National 
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(a) Overlap Between hERG Blockers (b) Labels of Overlapping Molecules. and hERG Karim et al. 

Figure 3-1: Comparison of two hERG Subsets. 

Toxicology Program (NTP), National Center for Advancing Translational Sciences (NCATS), 

U.S. Food and Drug Administration (FDA), and National Center for Computational 

Toxicology. It contains 12 binary labels: six nuclear receptor (NR) and six stress response 

(SR) pathway assays. Each assay has around 8500 molecules, with the majority present in 

several assays. However, the class distribution is not balanced, with every assay providing 

only around 7% toxic molecules. 

The Side Effect Resource (SIDER) dataset contains 1300 molecules and adverse drug 

reactions to these molecules, grouped into 27 organ classes [28]. On average, each class 

provides balanced binary data labels. 

All of the mentioned datasets can be obtained from popular drug toxicity frameworks, 

such as MoleculeNet [18] and Therapeutics Data Commons (TDC) [29]. They provide 

available versions of datasets with classification labels and a proper list of molecules 

stored as SMILES. Table 3.1 summarizes the information about the described datasets. 

Class imbalance poses a significant challenge for Machine Learning problems, and drug 

toxicity prediction is no exception. As illustrated in Figure 3-3, only hERG Karim, DILI, and 

SIDER have nearly equal amounts of toxic and non-toxic molecules. In other datasets, such 

as hERG blockers, the imbalance is more pronounced, as it provides almost 69% of toxic 

molecules. ClinTox and Tox21 are even more unbalanced, having more than 90% of toxic 
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and non-toxic molecules, respectively. This can lead to biased model performance, with 

classifiers favoring the majority class and mispredicting the other. 

Nonetheless, the Tox21 dataset was selected as the baseline for several reasons. First, 

it provides 12 assays, which are 12 different classification tasks. This allows models to be 

evaluated on one or several toxicity types without the need to use several datasets. Each 

classification task provides around 9000 molecules, leaving more than 1000 samples for 

training, validation, and testing sets. Due to this manageable size, evaluating models on 

Tox21 does not require a significant amount of time. 

Finally, a combined dataset is constructed to consider the option of creating a unified 

classification model to predict molecules with different toxicity types. To do so, we use all 

of the molecules from SIDER, ClinTox, hERG blockers, hERG Karim, SIDER, Tox21, and DILI. 

Both SIDER and Tox21 provide several toxicity labels for each molecule. Because of the 

overlap and potential conflicts, different labels cannot be used in the combined dataset. 

Therefore, only the first classification is used for SIDER, while molecules and labels from 

the "NR-AR" assay are selected for the Tox21 dataset. Figure 3-2 shows that while some 

overlap between the datasets exists, it is relatively small compared to the size of the 

individual datasets. Therefore, removing duplicates does not have a huge effect on the 

overall size of the combined dataset. This results in a dataset with 26.5k molecules and 

many different types of toxicity. 

3.2 Input Data Representations 

Initially, all of the datasets provide samples stored as SMILES. This format stores most of 

the information about the molecule’s chemical structure while taking relatively little disk 

space. However, many related works on toxicity prediction propose converting SMILES 

into other data representations. This provides features with the required information and 

improves ML model compatibility. 

After reviewing the literature, we were able to outline 3 prevalent data types, each 

having its own strengths and weaknesses: 
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Figure 3-2: The Overlap of All Used Datasets. 

1. Numerical data 

2. Graph-based representation 

3. Token-based representation 

Numerical data tends to be the most flexible, providing a comprehensive range of 

features and suitable for a large range of model architectures. It is created by calculating 

the chemical properties of molecules, such as descriptors and fingerprints. This type of 

data is applicable for traditional Machine Learning algorithms, such as decision trees, 

support vector machines, and gradient boosting machines [30]. Deep learning models 

such as Deep Neural Networks (DNNs), one- and two-dimensional Convolutional Neural 

Networks (CNNs), and Recurrent Neural Networks (RNNs) can also be considered. 

Graph-based representations mostly specialize in capturing the structural 

dependencies of molecules and interactions within them. Usually, atoms are used as graph 

nodes and covalent bonds between them are used as edges. This structure closely 

resembles the actual structure of a molecule, accurately conveying its atomic posi- 
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Figure 3-3: Class distribution of used datasets. 

tions, bond types, and spatial orientation. Graph Neural Networks and their variants can 

process this type of data representation: Graph Convolutional Neural Networks, Graph 

Attention Networks, Graph Isomorphism Networks, etc. 

The selection of tokens is based on the language models’ recent advances in drug 

toxicity classification. SMILES is a formal language with tokens representing a molecule’s 

chemical properties: atoms, bonds, rings, aromaticity, etc. Therefore, using SMILES 

effectively transforms drug toxicity classification into a Natural Language Processing task. 

Models like Bidirectional Encoder Representations from Transformers (BERT) and Long 

Short-Term Memory Networks (LSTM) have already been implemented for this task, 

outperforming some of the above-mentioned models [31, 32]. 

In our approach, we use all three of these data representations. Multiple numerical 

data representations are implemented, each providing a different subset of chemical 

properties, such as molecular fingerprints and chemical descriptors. One graph-based 

representation is employed to consider structural relationships and interactions within 

molecules. Finally, inspired by recent advancements in natural language processing, one 
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token-based data representation will capture intricate molecular characteristics and 

structural patterns. 

3.2.1 Morgan Fingerprints 

Circular or Morgan Fingerprints are a numerical data representation that encodes the 

chemical environment around each atom in a molecule within a defined radius. Morgan 

Fingerprints have previously been used in Quantitative Structure-Activity Relationship 

(QSAR) tasks, including toxicity classification. We used RDKit software to calculate 

fingerprints for selected datasets [33]. Using a bond radius of 2, fingerprints can be 

calculated as bit vectors with a length of 1024. 

3.2.2 Chemical Descriptors 

Two other numerical data representations calculate two-dimensional physicochemical 

descriptors using Mordred and RDKit packages, respectively. Mordred provides more than 

700 descriptors about atom and bond counts, topological indices, molecular complexity 

indices, surface area properties, etc. On the other hand, RDKit descriptors calculate 43 

descriptors related to molecular weights and sizes, surface areas, and aromaticity. The 

overlap in these descriptors is very small, and features that appear in both descriptor 

groups have different values. For example, both Mordred and RDKit calculate Lipinski’s 

rule of five, which checks whether a drug violates a certain set of rules [34]. However, 

Mordred calculates one boolean descriptor, while RDKit provides two numerical ones, 

representing the amount of Ns/Os and N-H/O-H bonds respectively. 

3.2.3 Graph-based Representation 

In this data representation, atoms are used as nodes, and the connections between them 

are as edges. Chemical features related to them are calculated as well. This results in a 

data representation that captures both the molecule’s topological and chemical 
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information. This work uses the DGL-LifeSci package for building graphbased 

representations of molecules [35]. 

3.2.4 Token-based representation 

First, Open Babel software is used to calculate the molecule’s atomic coordinates based 

on its SMILES representation [36]. This method is imperfect, as SMILES representation 

does not store this information, and coordinates must be approximated. This is done for 

every dataset except Tox21, which provides its own atomic coordinates. Next, an atomic 

pair distribution function (PDF) is calculated for each atom. According to 

Shermukhamedov et al., the PDF "represents the probability of finding an atom inside a 

sphere with a radius r centered at a selected atom" [37]. The resulting PDF vector is 

reduced using Principal Component Analysis and clustered with a K-means algorithm. 

After applying the PCA-KM algorithm, the final output is a set of tokens, each consisting 

of an atom from the molecule and its cluster. 

3.3 Classification Model Selection 

3.3.1 Random Forest Classifier 

Random Forest (RF) is an ensemble Machine Learning algorithm that can be used for 

classification tasks. It constructs multiple Decision Trees using random subsets of training 

data and considers each output to calculate the final prediction (Figure 3-4). The ability to 

handle large amounts of data and the interpretability are the main advantages of this 

algorithm. 

Random Forest has previously been implemented for Quantitative Structure-Activity 

Relationship (QSAR) tasks, including toxicity classification. A study by Wu et al. compared 

different model performances, contrasting simpler algorithms like Linear Regression, K-

nearest neighbor, and Random Forest against more complex Deep Neural Networks [30]. 

Their results on Tox21 have shown that the difference between the results of simple and 

complex models is not significant. The best-performing architecture was Random Forest. 
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This study also covered different data representations, such as Morgan fingerprints and 

chemical descriptors from RDKit and Mordred. Given these findings, we also choose Random 

Forest as the model for numerical data representations. The architecture is implemented 

using the Scikit-learn Python package. The selected number of estimators was set to 100, 

and the class weight is "balanced." The last setting specifies that the model weights 

dynamically change based on the class balance of the provided dataset. This assigns higher 

weights to the minority class to mitigate the class imbalance of the datasets. 

 

Figure 3-4: Representation of the Random Forest Classifier Algorithm. 

3.3.2 Graph Isomorphism Network 

A Graph Isomorphism Network (GIN) is a version of a Graph Neural Network, a Machine 

Learning model that uses graphs as input data. GIN introduces a more discriminative 

aggregator, which gathers information from neighboring nodes and allows them to 

exchange it [38]. GINs introduce an isomorphism test that tells if two graphs have the 

same structure with different permutations. Figure 3-5 illustrates two graphs with 

different node positions but identical connections, making them isomorphic. Combined 

with an additional Edge Prediction algorithm, this architecture has shown better 

performance in drug toxicity classification on the MoleculeNet datasets as compared to 

other graph-based models [39]. Based on these findings, we employ the same model for 

this work. This implementation is based on the DGL-LifeSci Python package, which 

Tree #1 Tree #2 Tree #3 

Input 

Ensemble 
Output 
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provides a framework for converting molecules into graphs and building graph-based 

models. The architecture and hyperparameters are unchanged from the original work. 

 

Figure 3-5: Representation of the Isomorphism in Graphs. 

3.3.3 Deep Bidirectional Transformers 

Bidirectional Encoder Representations from Transformers (BERT) is a Machine Learning 

language model that implements a transformer to capture both left and rightdirectional 

context from data [40]. During the training process, some of the tokens are masked to try 

to predict them based on the context. Treating SMILES symbols as tokens, 

Shermukhamedov et al. modified this model by adding a classification token and another 

layer to classify drug toxicity on Tox21, SIDER, and ClinTox datasets. Figure 3-6 illustrates 

the complete framework of the element Embeddings and Bidirectional Encoder 

Representations from Transformers (elEmBERT) model. 

 

Atom               X                  Y 
 Oc1ccc(C... O         -6.57877       -2.73985 [O2, C4, C4,... 

C         -5.71274       -2.23985 
C         -5.71274       -1.23985 
C         -4.84672       -2.73985 

C         -4.84672       -0.73985 
... 

Figure 3-6: Complete architecture of the elEmBERT framework. 

A 
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A 
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D E 

PCA & K-Means 
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Atomic 
Coordinates SMILES BERT Model Prediction 



21 

3.4 Ensemble Methods 

Each model produces a binary output, 1 for toxic and 0 for non-toxic. In this work, we 

consider three possible methods to combine these results. The "Majority vote" outputs a 

result that was predicted by the majority of models. The molecule is toxic if at least half 

of the models (in our case, at least 3) predict that and is non-toxic otherwise (Equation 

3.1). 

⎨ 

predmajority(3.1) 

 ⎪
⎩0, otherwise 

The "Minority vote" classifies a molecule as toxic if at least one model predicts the 

compound to be toxic (Equation 3.2.) This approach has been used previously, and it is 

meant to reduce the number of false positive predictions and improve precision. However, 

it also generally reduces overall accuracy. [11]. 

⎧ 

 ⎪⎨1, if  

predminority =(3.2) 

 ⎪
⎩0, otherwise 

For the third ensemble approach, each model’s performance is calculated for each 

dataset. The validation ROC AUC results are selected as the assigned weights for each 

model, and the weighted average predensemble is calculated, as shown in Equation 3.3. The 

final toxicity prediction is equal to 1 if predweighted is greater than or equal to 0.5, and 0 

otherwise. The combination of these results is the classifier framework’s final part, 

illustrated in Figure 3-7. 

 , if 

(3.3) 

 ⎪
⎩0, otherwise 
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3.5 Evaluation Metrics 

Common Machine Learning evaluation metrics are used to measure our model’s 

performance, such as accuracy, precision, recall, and ROC AUC. Given the binary nature of 

the dataset labels (1/0 for toxic/non-toxic), it is possible to split all predictions into True 

Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) ones. TP and 

FP are the number of toxic molecules classified as toxic and non-toxic, respectively. TN 

and FN are the number of non-toxic molecules classi- 

Datasets Data Classification Ensemble Prediction Representations Models Methods 

 

Figure 3-7: Framework for Toxicity Classifier. 

fied as non-toxic and toxic. Accuracy is the ratio of correctly predicted samples to total 

samples (Equation 3.4). It measures the overall correctness of predictions and evaluates 

model performance across all classes. 

 Accuracy = TP + TN (3.4) 

TP + TN + FP + FN 

Precision calculates the ratio of true positives to the sum of true and false positives 

(Equation 3.5). It reflects the model’s ability to identify toxic molecules and reduce the 

mislabeling of non-toxic molecules as toxic. 
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 TP (3.5) 

Precision = 

TP + FP 

Recall is the ratio of true positives to the sum of true positives and false negatives 

(Equation 3.6). It measures the model’s ability to identify all actual positive samples of the 

dataset. It is also known as True Positive Rate (TPR) and Sensitivity. 

 TP (3.6) 

Recall = 

TP + FN 

Receiver Operating Characteristic Area Under the Curve (ROC AUC) shows the model’s 

ability to distinguish between positive and negative samples across different classification 

thresholds. ROC-curve plots TPR against FPR, while AUC calculates the model’s 

discriminatory power (Equation 3.7). 

∫︁ 1 

 ROC AUC = TPR(FPR)d(FPR) (3.7) 
0 

All metrics are calculated for each dataset, including the combined one. ROC AUC 

metric is chosen as the main one, and all model optimization is based on it. All metrics are 

calculated using the Scikit-learn package. 
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Chapter 4 

Results & Discussion 

4.1 Tox21 Classification Results 

For each assay of Tox21, all five models were trained using 80%/10%/10% train / validation 

/ test split. After that, the accuracy and AUC ROC metrics were calculated. Table 4.1 shows 

the AUC ROC results of each assay with different models on a test set. The underlined text 

in the table indicates which of the data representations has the highest ROC AUC score for 

each assay. Overall, models based on numerical data show better results for 9 out of 12 

assays. Morgan Fingerprints, Mordred Descriptors, and RDKit Descriptors-based Random 

Forest classifiers have the highest AUC ROC in 4, 3, and 2 assays, respectively. The 

elEmBERT model is better in 2 assays, and the GIN model is better in 1 assay only. 

The test AUC ROC of each model is used separately as a weight for every assay. Using 

this, the weighted ensemble results are calculated and shown in the Ensemble section of 

Table 4.2, along with the results of "Majority" and "Minority" votes. The bold text denotes 

ensemble algorithms that achieve the same or better results than the best-performing 

classification model. The table shows that a "Majority vote" improves the AUC ROC results 

in 9 out of 12 assays. On average, the score is elevated by 4.76%. The degree of 

improvement varies between 1% and 12.5% depending on the assay. In 5 assays, the 

weighted average achieves the same results as the best model of that assay but 

underperforms in the rest. "Minority vote" shows the worst results, Table 4.1: Tox21 AUC 

ROC Results of Each Data Representation on Test Set. 

Assay Models 

 RDKit Morgan Mordred Graph Elem 
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nr-ahr 0,8770 0,8770 0,8953 0,7294 0,7426 

nr-aromatase 0,8661 0,8580 0,8528 0,7113 0,6644 

nr-er 0,7350 0,7510 0,7576 0,8185 0,7718 

sr-mmp 0,8640 0,8877 0,8524 0,7375 0,7930 

sr-p53 0,9592 0,9592 0,9660 0,7137 0,7883 

sr-atad5 0,8701 0,9401 0,8866 0,7755 0,7496 

nr-ar-lbd 0,8961 0,9083 0,9328 0,8298 0,8249 

nr-ar 0,7971 0,8212 0,8165 0,8263 0,8905 

nr-ppar-gamma 0,9914 0,9080 0,8039 0,6151 0,9890 

sr-are 0,8029 0,8112 0,8170 0,6572 0,8228 

sr-hse 0,8134 0,8557 0,8021 0,7789 0,7174 

nr-er-lbd 0,8635 0,9075 0,8491 0,8635 0,7627 

with the AUC ROC score lower than the best-performing model for each assay. This result 

is expected, as the "Minority vote" is aimed to improve precision but reduces overall 

results. 

The current state-of-the-art model TrimNet achieves an average ROC AUC of 0.860 

[41]. In our results, the average ROC AUC is equal to 0.935, which outperforms it by 7.5%. 

Table 4.2: Tox21 Ensemble AUC ROC Results of Each Data Representation on Test 

Set. 

Assay Majority Minority Weight 

nr-ahr 0,9044 0,7675 0,8899 

nr-aromatase 0,9171 0,7500 0,8661 

nr-er 0,9441 0,8129 0,7989 

sr-mmp 0,9066 0,8143 0,8824 

sr-p53 0,9634 0,7967 0,9634 

sr-atad5 0,9850 0,8333 0,9350 

nr-ar-lbd 0,9159 0,8400 0,9002 

nr-ar 0,9260 0,8559 0,8271 

nr-ppar-gamma 0,9914 0,7969 0,9914 

sr-are 0,9023 0,8192 0,8226 

sr-hse 0,8898 0,8448 0,8557 

nr-er-lbd 0,9825 0,8310 0,9075 

4.2 Other Datasets Classification Results 

Similarly to the Tox21, the classification performance was evaluated on five additional 

datasets. Table 4.3 shows ROC AUC score results on each dataset’s test set. Because the 

SIDER dataset provides 27 classification tasks, its results show average values for all 
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metrics. Similarly to the Tox21 results, numerical data representations show the highest 

results in 3 out of 5 datasets. The best performance is achieved by the model, based on 

Mordred descriptors, followed by Morgan Fingerprints, RDKit Descriptors, and Graph 

models, respectively. The elEmBERT model shows a significant drop in performance 

compared to the Tox21 results. 

The "Majority vote" and "Weighted vote" ensemble approaches increase the ROC AUC 

score in 2 out of 5 datasets. However, the improvement is less than 1%. Compared to 

TrimNet, our ClinTox and SIDER results are better by 0.6% and 0.2%. Even though other 

datasets do not show an improvement in ROC AUC, the "Majority vote" and "Weighted 

vote" show only a 1% difference from the best model results. In the case of ClinTox, the 

"Minority Vote" predicted only toxic labels, which made it impossible to calculate the ROC 

AUC score. 

Table 4.3: Other datasets’ AUC ROC results of each data representation and ensemble 

method on the test set. 
Dataset  Data Representation  Ensemble 

 RDKit Mordred Morgan Elem Graph Major Minor Weight 

ClinTox 0,9542  0,4504 0,7070 0,7070 0,9542 - 0,9542 

hERG B 0,7997 
 

0,7706 0,4986 0,8211 0,8955 0,3538 0,8955 

hERG K 0,8202 0,8389  0,4898 0,7559 0,8426 0,7295 0,8426 

DILI 0,7313   0,4965 0,7917 0,7902 0,6966 0,7902 

SIDER 0,5920 
 

 

0,5392 0,5874 0,6376 0,5976 0,6376 

Average 0,7795 0,8162  0,5462 0,7326 0,8240 0,5944 0,8240 

The accuracy results are slightly better, as shown in Table 4.4. Similarly to previous 

results, numerical data representations show better results overall for all datasets. 

However, the "Majority vote" and "Weighted vote" improved the accuracy results in 3 out 

of 5 datasets. The degree of improvement varies from 0.001% in ClinTox to 2.1% in DILI. 

Table 4.5 shows that all the ensemble methods improve the precision results in Table 

4.4: Other datasets’ accuracy results of each data representation and ensemble method 

on the test set. 
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Dataset  Data Representation  Ensemble 

 RDKit Mordred Morgan Elem Graph Major Minor Weight 

ClinTox 0,9091  0,8939 0,9015 0,9015 0,9091 0,9015 0,9091 

hERG B 0,8182 
 

0,8030 0,6212 0,8485 0,8788 0,6970 0,8788 

hERG K 0,8201 0,8387  0,4900 0,7472 0,8424 0,6082 0,8424 

DILI 0,7292   0,5000 0,7917 0,7917 0,6458 0,7917 

SIDER 0,7385 
 

 

0,7108 0,7099 0,7475 0,7260 0,7475 

Average 0,8030 0,8357  0,6447 0,7998 0,8339 0,7157 0,8339 

every dataset. The "Minority vote" performs especially well by achieving the same top 

precision in ClinTox and hERG Blockers, slightly improving the results of SIDER, and 

significantly improving the results of hERG Karim and DILI by 13% and 12.5%. 

Table 4.5: Other datasets’ precision results of each data representation and ensemble 

method on the test set. 
Dataset  Data Representation  Ensemble 

 RDKit Mordred Morgan Elem Graph Major Minor Weight 

ClinTox 1,0000  0,9916 0,9832 0,9832 1,0000 1,0000 1,0000 

hERG B 0,9362 
 

0,9149 0,7872 0,9149 0,9787 0,9787 0,9787 

hERG K 0,8098 0,8247 0,8380 0,5394 0,8395 0,8544 0,9718 0,8544 
DILI 0,6923 0,7692 

 
0,5385 0,7692 0,8077 0,9231 0,8077 

SIDER 0,7564 
 

 0,7372 0,5938 0,7600 0,8075 0,7600 

Average 0,8389  0,8529 0,7171 0,8201 0,8802 0,9362 0,8802 

The ensemble techniques affect the recall metric the least, as illustrated in Table 4.6. 

Only SIDER results have shown a 2% improvement by the "Majority" and 

"Minority" approaches. 

Table 4.6: Other datasets’ recall results of each data representation and ensemble method 

on the test set. 
Dataset  Data Representation  Ensemble 

 RDKit Mordred Morgan Elem Graph Major Minor Weight 
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ClinTox 0,9084 0,9084 0,9008 0,9141 0,9141 0,9084 0,9015 0,9084 
hERG B 0,8302  0,8269 0,7115 0,8776 0,8679 0,7077 0,8679 

hERG K 0,8270  0,8430 0,4912 0,7089 0,8345 0,5628 0,8345 

DILI 0,7826 

 

0,7778 0,5385 0,8333 0,8077 0,6154 0,8077 

SIDER 0,6900  0,7192 0,6791 0,6657 0,7435 0,6275 0,7435 

Average 0,8076 0,8401 0,8135 0,6669 0,7999 0,8324 0,6830 0,8324 

4.3 Combined Dataset Classification Results 

According to Table 4.7, each data representation except elEmBERT achieves at least 78% 

ROC AUC and Accuracy on a combined dataset. This dataset used 26.5k molecules with 

labels from different toxicity types, showing good classification results. The Morgan 

Fingerprints-based Random Forest classifier achieves the best results for every metric. 

Ensembling the results improved Precision with the "Minority" approach and Recall with 

"Majority" and "Weighted" approaches. 

Table 4.7: Combined dataset’s metrics results of each data representation and ensemble 

method on the test set. 
Dataset  Data Representation  Ensemble 

 RDKit Mordred Morgan Elem Graph Major Minor Weight 

Accuracy 0,8212 0,8291  0,5260 0,7899 0,8400 0,6653 0,8400 

Precision 0,6937 0,7125  0,3617 0,6186 0,7065 0,9219 0,7065 

Recall 0,8097 0,8156 

 

0,3739 0,7845 0,8482 0,5353 0,8482 

ROC AUC 0,8182 0,8257  0,4943 0,7884 0,8422 0,7244 0,8422 
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Chapter 5 

Discussion 

The initial tests on the Tox21 dataset provide valuable insights into different ML models 

and data representations and their efficiency in classifying molecules’ toxicity. Numerical 

data-based models show higher ROC AUC scores in 9 out of 12 assays, meaning that they 

capture essential features of molecules. Despite using the same Random Forest 

architecture, different numerical data representations show the best results for specific 

assays. This outlines the difference in captured features, their importance for specific 

classification tasks, and their complementarity. Although less efficient in most assays, 

graph and token-based representation provide an important alternative to numerical data, 

using topological and morphological properties of molecules’ SMILES representation. 

Results of the ensemble approaches, especially the "Majority vote," further prove the 

importance of using several classification models. By treating the result of each 

classification model as a vote and selecting the most frequent one, the ROC AUC score was 

improved in 9 of 12 assays, averaging 4.76% per assay. The "Minority vote" shows lower 

results but improves the overall prediction safety and minimizes the chance of a false non-

toxic prediction. The "Weighted vote" provides results that do not outperform individual 

classification models while not being focused on the safety of predictions. Using 

alternative strategies for weight calculation could potentially improve its results. 

Metric analysis of other datasets shows similar results. Numerical data representations 

have the best ROC AUC score and accuracy results in every dataset. A model based on 

chemical descriptors from the Mordred package shows better performance compared to 

RDKit descriptors and Morgan fingerprints. The main reason could be the type of 

gathered data and features. Mordred calculates more than 700 two- and three-

dimensional descriptors, while RDKit calculates only 43 two-dimensional ones. Morgan 



 

fingerprints can also be considered as a two-dimensional feature, focusing on the 

similarity of fragments in a molecule. Although these data representations are 

complementary, Mordred descriptors may provide more important information, 

resulting in better results. 

The results of ensemble methods on other datasets indicate their efficiency, but not to 

the extent observed in the Tox21 dataset. Out of 5 datasets, the ROC AUC and accuracy 

were improved in 2 and 3, respectively. However, the degree of improvement ranges from 

less than 1% to 2%, smaller than the average improvement in Tox21. Several reasons may 

cause this: 

1. Class balance. Tox21 has a disproportionate class balance, with more than 90% of 

molecules being non-toxic. This may result in models like Random Forest favoriting 

the majority class and still having good results. It can be noticed that datasets 

improved by ensemble methods, such as ClinTox and hERG Blockers, also have a 

strong class imbalance. Decreased performance of individual models on balanced 

datasets could affect the efficacy of ensemble methods. 

2. elEmBERT Performance. Apart from the SMILES representation of molecules, Tox21 

provided atomic coordinates of the molecules, which were used to generate tokens 

for elEmBERT. For other datasets, however, the position of atoms had to be 

calculated from SMILES using Open Babel software. Because SMILES do not store 

that information, coordinates had to be approximated, which could affect the 

prediction results. 

The metric that benefits the most from the ensemble techniques is precision. While all 

three methods positively affect the results of individual models, the "Minority vote" shows 

the biggest improvement. This result is expected, as the "Minority vote" 
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predicts a toxic label if at least one model predicted that. This results in "toxic" predictions 

appearing more often, increasing the number of True Positive predictions and decreasing 

the number of True and False Negative ones. 
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On the other hand, the recall was the least affected by the combination of the results. 

Only SIDER results have shown a 2% improvement by the "Majority" and "Minority" votes. 

The possible reason is that recall is more affected by the performance of the individual 

models, as it measures the ability of a classifier to identify all instances of the positive 

class. 

The combined dataset, which includes more than 25k molecules and different types of 

toxicity, shows considerably good results. In contrast to other datasets, the Random Forest 

model based on Morgan Fingerprints achieves the best results in all metrics. One possible 

explanation is the difference in the most important descriptors across datasets. Morgan 

fingerprints, on the other hand, could provide similar information regardless of toxicity 

type. Despite having different toxicity types potentially caused by different 

physicochemical processes, the best-performing classifier achieves 84.64% accuracy and a 

ROC AUC score of 0.843. All ensemble results do not differ significantly from the results of 

the individual models. The only exception is precision, which is greatly improved by the 

"Minority vote." Overall, it can be assumed that it is possible to predict several toxicity 

types with a single classification model with considerably good accuracy. 
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Chapter 6 

Conclusion 

This project proposed and tested a novel drug toxicity prediction framework. It uses 

several representations of molecules’ chemical structure, such as Morgan fingerprints, 

chemical descriptors from RDKit and Mordred libraries, graphs, and tokens. Corresponding 

Machine Learning classification models were built for each data representation: Random 

Forest, Graph Isomorphism Network, and Deep Bidirectional Transformer. 

The predictions of all models were combined using three different methods. The 

"majority vote" selects the most frequent prediction, the "minority vote" checks if at least 



 

one prediction result is "toxic", and the "Weighted vote" uses the results of each model 

on the validation set to weigh predictions. 

The performance was evaluated on six different datasets, each providing a different 

toxicity type. Additionally, all six datasets were combined and evaluated as well. The ROC 

AUC score was chosen as the main evaluation metric, along with accuracy, precision, and 

recall being measured as well. 

Results demonstrate that individual models based on the numerical data 

representations show better results, with models based on Morgan fingerprints and 

Mordred descriptors having the best overall performance. Depending on the dataset, the 

ROC AUC scores vary between 65.7% and 99.1%. The "majority vote" has the most impact 

on the ROC AUC results, increasing scores by at least 1%, all the way up to 12.5% in half of 

the datasets. The "minority vote" improves the precision results the most, 
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but severely underperforms in other metrics. The "weighted vote" usually performs better 

than the "minority vote" but does not outperform the "majority vote" or the best 

individual models in most of the cases. 

Evaluation of the combined dataset shows that it is possible to gather a dataset with 

different toxicity types and achieve a ROC AUC score of at least 0.846. Ensemble 

techniques, however, had little to no effect on such a dataset. 

Overall, the achieved results indicate that using different data representations can be 

beneficial to the classification results. Models, trained on several toxicity types can achieve 

tolerable classification results. Results can be improved further by changing the method 

of calculating atomic coordinates, which would improve the performance of the token-

based model and the whole classifier as well. Additionally, a more accurate weight 

calculation algorithm can be developed to improve the "weighted vote" results.  
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