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Abstract

The development of organic fluorescent materials needs quick and precise predictions
of photophysical characteristics for techniques like high-throughput virtual screen-
ing. However, there is a challenge caused by the constraints of quantum mechanical
computations, experiments, and time. This thesis investigates the field of machine-
learning-assisted fluorescence probe design to answer this difficulty. The main part
of this investigation is the utilization of a substantial database of optical properties
of organic compounds that was collected from various scientific papers. One of the
complicating factors of this database is the presence of missing data which stems from
the collection from various sources, and this inconsistency is examined with the use
of a range of imputation methods. Furthermore, the thesis aims to construct predic-
tive models that can forecast properties that are inherent to fluorescent compounds
such as quantum yield, absorption and emission spectra, among others. This research
aims to pave the way for a more efficient and targeted approach to fluorescent probe
design.
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Chapter 1

Introduction

Fluorescence is a phenomenon when certain atoms and molecules absorb light at a

specific wavelength and emit at a longer wavelength after a short period, known as

the fluorescence lifetime [1]. The fluorescence process is influenced by three crucial

events as shown in Figure 1-1. The initial event, where a molecule is excited by

an incoming photon, takes place in femtoseconds (10−15 seconds). Subsequently, the

vibrational relaxation of excited state electrons to the lowest energy level occurs at

a slower pace, measured in picoseconds (10−12 seconds). The final step involves the

emission of a longer wavelength photon, returning the molecule to the ground state,

and unfolds over a longer time frame of nanoseconds (10−9 seconds).

Although the entire molecular fluorescence lifetime is measured in a mere billionth

of a second, it is a remarkable interaction between light and matter. Fluorescent

probes are essential tools in the fields of molecular biology, pharmacology, and cel-

lular imaging. Appropriately constructed molecules emit fluorescent signals when

bound to specific cellular or molecular targets. This fluorescence can be detected

and used to study cellular processes, identify specific cellular structures, or monitor

various biochemical reactions. Originally used to monitor protein dynamics, recent

advances in fluorescent probes allow sophisticated measurements of protein instability

and turnover. Moreover, fluorescent sensors are shedding light on the "dark matter"

of the cellular milieu, visualizing small molecules, secondary metabolites, metals, and

ions at the single-cell level [2].
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Figure 1-1: The diagram illustrating energy state transitions leading to fluorescence
and excitation and emission profile

However, the accurate engineering of these probes is a difficult and time-consuming

procedure that requires numerous trials of experiments. Theoretical calculations

based on ab initio and density functional theory methods have been widely used

to compute optical properties of designed chromophores (i.e. molecules that absorb

light and emit colour as a result). Such theoretical calculations require high com-

putational costs. Therefore, the development of advanced materials has entered a

new era with the introduction of machine learning (ML) and artificial intelligence

(AI), which promise to accelerate the discovery of novel compounds and simplify the

design process. As a result of its strong data processing capability and relatively

low research threshold, ML can significantly cut human and material expenses and

expedite the research and development cycle. It is used to examine material struc-

tures and forecast material properties and has the potential to replace conventional

research [3, 4]. In the context of predicting properties of fluorescent probes, the lat-

est literature highlights notable progress in this area, indicating that the research

goal is achievable. There are some findings on predicting properties such as emission

wavelength or quantum yields with the use of ML approaches [4, 5, 6, 7, 8].

There are key prerequisites for an ML-based approach, which are data processing

and feature engineering. Data-driven solutions like ML are determined by high-quality
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data, by its reliability and extent. Another challenging task, which is essential for

this specific topic, is the representation of chemical data, in a way, that is under-

standable by both humans and machines [9]. Different ways of representations, which

are linear, structural, graphical, or fingerprints are reviewed in these papers [9, 10].

Molecular descriptors are information about molecule physicochemical characteristics,

such as those related to constitution, structure, lipophilicity, electronics, geometry,

hydrophobicity, solubility, quantum chemistry, and topology. Fingerprints are a bi-

nary (Yes/No), or count descriptors that show which functional groups, molecular

topology, and physical properties, are present in the molecules. Thanks to the ad-

vancements in computing power, chemists may now evaluate the chemical space by

utilizing fingerprints and large-scale molecular descriptors. However, rational feature

selection is often expensive and difficult.

In the pursuit of unraveling the relationship between ML and the synthesis of fluo-

rescent probes, this thesis utilizes comprehensive databases [6, 11]. The databases are

a collection of of experimental data including various optical properties of fluorescent

compounds. The primary focus lies in investigating the potential of AI to forecast

the optical properties inherent in organic molecules. This research aims to illuminate

how predictive modeling can be harnessed to anticipate the unique optical signatures

exhibited by fluorescent compounds.

Beyond mere exploration, this thesis ventures to capture diverse molecular repre-

sentations and generate novel features, thereby asses the influence of feature engineer-

ing within the context of predicting optical properties. Furthermore, an additional

objective of this work is to extend the application of predictive modeling to address

the issue of missing values within the existing databases. By leveraging ML tech-

niques for imputation, the research aims to enhance the completeness and accuracy

of the database, ultimately fostering a more robust foundation for the design and

prediction of fluorescent probes. This thesis aims to contribute to the integration of

AI and molecular design, advancing the frontier of fluorescent probe development for

novel applications in biological research.

Finally, the research objectives consist of the following parts:
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• Harness predictive capabilities of ML to utilize a database of organic com-

pounds;

• Leverage molecular representations and feature extraction to enhance the usage

of the database;

• Address another issue of the dataset – the presence of missing data by imputa-

tion.
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Chapter 2

Related work

Fluorescent compounds are frequently used in a variety of settings. Given their photo-

chemical properties, fluorescent molecules can be utilized as analytical and diagnostic

instruments to study biological science and comprehend cell biology. Fluorescent

compounds have been utilized to designate target cells, RNAs, DNAs, peptides, and

live-cell pictures, as demonstrated by recent scientific advancements [11]. For a long

time, chemists have been searching for the fluorescent core structures. Current re-

search strategies rely primarily on scientific intuition and trial-and-error experimen-

tation. In recent years, ML has shown great potential as a useful tool in many areas

including material chemistry.

In [4], the authors investigate the relationship between the chemical structure of

fluorescent dyes and their live-cell imaging properties. In this study, authors synthe-

size 1536 dyes to model ML-classifiers for assisting live-cell staining and endoplasmic

reticulum judgment. They have generated more than 2000 molecular representations

and reduced dimensions with Principal Component Analysis (PCA). However, the

best performance is obtained from the model trained with features without PCA.

Then, a multi-class classification task on cell-staining ability is performed. Moreover,

they have examined another binary classification problem of whether dyes can target

ER for imaging based on a subset of the initial dataset. Utilized ML models include

K-Nearest Neighbours (KNN), Logistic Regression, Random Forest (RF), Gradient

Boosting (GB), and Multilayer Perceptron (MLP). They achieved an accuracy of 84%,
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a recall of 89% with an Area Under Curve of 0.9 with the GB model.

In [5], the authors discuss the significance of basic photophysical parameters by

leveraging the large-scale (nearly 12,000 molecules) database to apply ML for emission

wavelength predictions. They have introduced clustering and statistical approaches

for predictive modeling. Firstly, they have extracted descriptors and reduced the de-

scriptor dimension with several statistical indicators like variance threshold selection.

Moreover, they have explored K-means to cluster 15 subgroups of molecular repre-

sentations. It reduced the dimensionality of the feature space from 11411 to 6208.

The Least Absolute Shrinkage and Selection Operator (Lasso) regression coupling in

the ensemble with the RF model is reported as the best predictor. Lasso is used to

extract dominant 480 descriptors. After all manipulations, they achieved 𝑅2 = 0.655

with lower computational expenses. Finally, it is identified that four conjugated 𝜋 -

bonding related descriptors dominantly contribute to the target value.

In [6], authors establish a database covering more than 4300 solvated organic flu-

orescent dyes with 3000 distinct compounds and develop an ML approach to forecast

emission and absorption wavelengths and photoluminescence quantum yield. They

executed common procedure, where the first step includes descriptor generation to

later use it as feature space. They have generated different descriptors like Morgan

fingerprints, CDK fingerprints, MACCS keys, PubChem fingerprints, and their com-

binations with functionalized structure descriptors for chromophores, and extracted

general experimental solvent descriptors. They have utilized different ML algorithms

like MLP, Support Vector Machines (SVM), KNN, and various tree models. Along

with regression models, the authors have built classification models to predict quan-

tum yield. The best model achieved a Mean Absolute Error of 0.13, 11.1 and 14.6

for quantum yield, absorption and emission wavelengths, respectively. Authors have

compared their estimates with time-dependent density functional theory calculations,

and found out that few data augmentation improved their ML predictions. However,

their suggestion of data augmentation involves adding similar to molecules to test set

molecules, which contradicts ML rules. Particularly, this is called data leakage, phe-

nomenon which occurs when information from the test set, which the model should
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not have access to during training, is inadvertently included in the training process.

This can lead to overly optimistic performance estimates during model training and

evaluation because the model is effectively being trained on information that it will

later need to predict.

In [7], authors predict photophysical properties, such as quantum yield, emission

wavelength, and radioactive decay rate constant, of phosphorescent emitters with ML

models. Phosphorescence is a process similar to fluorescence, the difference is that

it involves a longer-lived excited state. Phosphorescent materials continue to emit

light after the light source is removed, which is why they are often observed glowing

in the dark. To implement the ML approach, the authors have established a dataset

with 200 samples collected from the literature. As features, they have extracted up

to 15 descriptors. This is rather a small dataset to adequately assess the validity of

results from the prespective of ML. Nevertheless, they have implemented ML models

like KNN, SVM, RF, Boosted Trees like LightGBM, AdaBoost, and XGBoost, with

10-fold cross-validation. The best results of the coefficient of determination 𝑅2 are

0.96, 0.81, and 0.67 for the predictions of emission wavelength, photoluminescence

quantum yield, and radioactive decay rate constant, respectively.

In [8], the authors predict the quantum yield of carbon quantum dots in biochar

produced from 10 types of farm waste. Carbon quantum dots are a type of carbon-

based nanomaterial with sizes typically ranging from a few to several tens of nanome-

ters. The authors investigated the relationship between biochar preparation param-

eters (12 experimental descriptors) and quantum yield with prepared 480 samples.

Their topic of interest is very specific with a focus on one type of nanomaterial, and

the dataset is limited, thus, it is not generalizable to other cases. Their experiment

involves 6 ML models. Models include KNN, tree-based models like Decision Tree

(DT), RF, etc. The best result corresponds to the GB regression model with 𝑅2 > 0.9.

Moreover, they investigated feature importance of the best model.

The main course of this work is to predict the optical properties of fluorescent

molecules based on available structural information. Tables 2.1 and 2.2 illustrate a

comparison of this work and the above-stated related papers. Table 2.1 demonstrates
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target values addressed in the related papers and in this thesis. Table 2.2 shows

information regarding the approach and methodology.

The work covered in this thesis follows a similar procedure as in the above-stated

papers. The datasets [6, 11] used in the work provide more information on optical

properties, particularly, it is possible to predict emission wavelength 𝜆𝑒𝑚𝑖, absorption

wavelength 𝜆𝑎𝑏𝑠, quantum yield Φ𝑄𝑌 , extinction coefficient log10(𝜖𝑚𝑎𝑥), fluorescence

lifetime 𝜏𝑓𝑙𝑢. The datasets are utilized with feature extraction techniques,i.e. descrip-

tor generation with the help of sufficient libraries through molecular structure. One

difference of this thesis is an attempt to further data augmentation through impu-

tation. Ideally, we want to build a predictive model to forecast all available optical

properties. However, the existence of missing values in the dataset presents another

challenge. Thus, this thesis work focuses on another feature engineering approach,

which is imputation. Regression models are utilized, and predictions are evaluated to

assess not only model performance but also to validate data augmentation approaches.

Table 2.1: Review of related papers and contribution of this work

Work Target variables
Maximum
absorption
wavelength,

𝜆𝑎𝑏𝑠

Maximum
emission

wavelength ,
𝜆𝑒𝑚𝑖

Quantum
yield,
Φ𝑄𝑌

Cell
staining
ability

Lifetime,
𝜏𝑓𝑙𝑢

Extinction
coefficient,
log10(𝜖𝑚𝑎𝑥)

Yang et al. [4] ✓

Ye et al. [5] ✓

Ju et al. [6] ✓ ✓ ✓

Wang et al. [7] ✓ ✓

Chen et al.[8] ✓

Thesis ✓ ✓ ✓ ✓ ✓
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Table 2.2: Review of related papers and contribution of this work (continued)

Work Data size Feature
engineering

Additional
processing ML task Year

Yang et al. [4] 1536 Descriptor
generation

Dimensionality
reduction Classification 2023

Ye et al. [5] 11460
Descriptor
generation

through SMILES

Dimensionality
reduction Regression 2020

Ju et al. [6] 4300
Descriptor
generation

through SMILES
✗

Regression,
Classification 2021

Wang et al. [7] 206

Descriptor
computation

through calculations
based on density
functional theory

✗ Regression 2023

Chen et al. [8] 480
Descriptor
generation

through experiments
✗ Regression 2023

Thesis 22907
Descriptor
generation

through SMILES
Imputation Regression 2024
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Chapter 3

Methodology

This section provides the overall methodology of this study. This methodology is

divided into the following sections. The Dataset Collection and Preprocessing sec-

tion holds detailed information on the dataset and its preparation part. The Data

Augmentation approaches section explains the resampling procedure. The Feature

Engineering section reports one of the main steps in modeling predictors. It explains

various representations of molecules. The Predictive Modelling part dives into the

ML part. It holds information on the problem description, selected models, and eval-

uation metrics. Finally, the Research workflow section concludes the research path.

3.1 Dataset Collection and Preprocessing

In this thesis work, a dataset [11] with optical properties of organic compounds is

being utilized. To enhance model performance, we decided to include an additional

dataset [6]. For simplicity, we call the first dataset Experimental, and the second one

Chemfluor.

After data processing, we focused on five luminescence-related properties as tar-

gets. Table 3.1 shows the chosen fluorescent properties and their definitions.
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Table 3.1: Target values

Property Definition

Maximum absorption wavelength
The wavelength of light at which

a fluorescent substance absorbs the highest
intensity of electromagnetic radiation

Maximum emission wavelength
The wavelength of light at which

a fluorescent substance emits the highest
intensity of electromagnetic radiation

Quantum Yield The ratio of the number of photons emitted
to the number of photons absorbed

Extinction Coefficient How strongly a fluorescent molecule
absorbs light at a particular wavelength

Lifetime
The time a fluorophore spends

in the excited State before emitting a photon
and Returning to the ground State

3.1.1 Data Collection

Table 3.2 shows information on Experimental dataset attributes. This dataset is

collected from different sources and contains different attributes as well as target

variables such as absorption wavelengths, emission wavelengths, quantum yields, etc.

The molecules are represented in the notation of a simplified molecular-input line-

entry system (SMILES). Since the dataset was collected from different sources, it has

an issue with missing data, which will be addressed in this thesis. Table 3.2 also

shows information an available values for each column.

Table 3.3 shows information on the additional Chemfluor dataset. Similarly,

it contains information about different properties. It was collected from different

sources, thus, some missing values are also present.

3.1.2 Data Preprocessing

There are some cleaning steps applied to assemble a new dataset.

Two datasets, Experimental and ChemFluor datasets are combined into one. Both

of them are collected from different sources, thus, there are missing values, and also

duplicates, i.e. the same combinations of chromophores and solvents were presented

in different papers by different authors. In order to keep only unique combinations,
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Table 3.2: Experimental Dataset overview

Column name Data type Description Non-missing values

Tag Float The numbering of
data points 20236

Chromophore String SMILES of
chromophore structure 20236

Solvent String SMILES of
solvent structure 20236

Absorption
max (nm) Float Maximum absorption

wavelength, 𝜆𝑎𝑏𝑠,𝑚𝑎𝑥
17295

Emission
max (nm) Float Maximum emission

wavelength, 𝜆𝑒𝑚𝑖,𝑚𝑎𝑥
18142

Lifetime (ns) Float Fluorescence lifetime, 𝜏𝑓𝑙𝑢 6960

Quantum yield Float Photoluminescence
quantum yield, Φ𝑄𝑌

13837

log(𝑒/𝑚𝑜𝑙−1

𝑑𝑚3𝑐𝑚−1) Float Extinction coefficient at
𝜆𝑎𝑏𝑠,𝑚𝑎𝑥, log10(𝜖𝑚𝑎𝑥)

8041

abs FWHM (𝑐𝑚−1) Float Absorption bandwidth
(FWHM), 𝜎𝑎𝑏𝑠

747

emi FWHM (𝑐𝑚−1) Float Emission bandwidth
(FWHM), 𝜎𝑒𝑚𝑖

627

abs FWHM (nm) Float Absorption bandwidth
(FWHM), 𝜎𝑎𝑏𝑠

3592

emi FWHM (nm) Float Emission bandwidth
(FWHM), 𝜎𝑒𝑚𝑖

7198

Molecular weight
(𝑔𝑚𝑜𝑙−1)

Float Molecular weight
of chromophore 20236

Reference String Source document DOI 20236
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Table 3.3: Chemfluor Dataset overview

Column name Data type Non-missing values
Absorption/nm Float 4252
Emission/nm Float 4386

PLQY Float 3090
SMILES String 4386
solvent String 4386

Reference(doi) String 4386
Et30 Float 4386
SP Float 4386
SdP Float 4386
SA Float 4386
SB Float 4386

Test method of Quantum Yield Float 3207

aggregated values for different properties are stored.

Another issue is that not all data points correspond to solutions of fluorophores.

Some compounds are fluorescent in solid state or thin films, meaning that no solvent

is involved. Some compounds could be emissive in their specific states, such as solid,

liquid, or gaseous. For the sake of uniformity, it is decided to drop cases where there

is no combination of chromophore and solvent, rather just chromophore alone.

In addition, we are interested in keeping only canonical representations of molecules,

therefore, SMILES notations are canonicalized.

In both datasets, more than five properties are presented. However, the available

number is not sufficient for ML problems, thus, they are not considered in this work.

After all above-mentioned transformations, the dataset is formed, and Table 3.4

shows the information on the available size for each target property.

Table 3.4: Dataset after data cleaning

Column name Non-missing values
Chromophore 22907

Solvent 22907
Absorption max (nm) 20471
Emission max (nm) 20924

Lifetime (ns) 6703
Quantum yield 15836

log(𝑒/𝑚𝑜𝑙−1 𝑑𝑚3𝑐𝑚−1) 7919
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3.2 Data Augmentation approaches

We want to restore one value with another one. The issue is that most of the property

columns consist of missing data, moreover, there is a correlation between some target

values (see Figure 3-1). A high correlation coefficient means that there is a linear

dependency between values. So there is an opportunity to perform data augmentation

based on imputation with regression (maybe linear regression). Data augmentation

is the process of artificially generating new data from existing data. It is one to boost

model performance. Therefore, we want to analyze whether data augmentation affects

predictions. There are different approaches to restoring the data for our case.

Figure 3-1: Correlation of target properties
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3.2.1 Imputation approach

To analyze the effects of imputation let us consider the following task: predict one of

the target variables (properties) based on the given information, i.e. other properties

and molecular representations. To do so we should impute data, i.e. we will restore

missing values in target columns. Fewer missing values mean better accuracy or

reliability of the data, so consider columns with less missing data. Algorithm 1

describes two variants to impute data.

Algorithm 1 Data Preprocessing Steps
1: Feature Imputation:
2: - Delete rows where no label is available
3: - Split dataset: train (70%) - validation (15%) - test (15%)
4: - Impute missing values with some imputation model
5: - Train regression models on train dataset, use a validation set to choose hy-

perparameters
6: Target Imputation:
7: - Do not delete any rows
8: - Keep validation and test the same as in the previous set (meaning we won’t

have any imputed target values in evaluation sets)
9: - Add rows to the train dataset, where there are missing values for target

variable
10: - Impute missing values with some imputation model
11: - Train regression models on new train dataset, use a validation set to choose

hyperparameters
12: Compare the results of two approaches on the test set

By comparing the results of the two approaches and results, where no imputation

is applied, we can analyze the effect of imputation on a particular property as well as

the performance of ML models.

3.2.2 Imputation model

Imputation models considered in this work include Multivariate imputation [12]

and Nearest neighbors imputation [13] algorithms. This section describes the

first approach. The latter approach uses the basic K- Nearest Neighbours algorithm,

which is described in detail in section 3.4.6.
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To impute models target properties are used, also, some common descriptors are

added. These include descriptors such as number of atoms, number of heavy atoms,

number of hydrogen donors and acceptors, TPSA, Chi-indexes, Kappa-indexes. De-

scriptors are explained in detail in section 3.3.

Multivariate imputation algorithms

Multivariate imputation algorithms use the entire set of available feature dimensions

to estimate the missing values. This approach is performed with the Iterative Imputer.

The Iterative Imputer class, which approximates the missing values within each fea-

ture by leveraging the information contained in other features, operates through an

iterative process. In each iteration, a particular feature column is designated as the

dependent variable, denoted as 𝑦, while the remaining feature columns are treated

as independent variables, represented collectively as 𝑋. Subsequently, a regression

model is fitted on the available observed data (𝑋, 𝑦) to estimate the missing values

of 𝑦. This procedure is executed iteratively for each feature, following a round-robin

fashion, and is repeated for a predetermined number of imputation rounds. Mathe-

matically, the iterative imputation procedure can be represented as:

𝑦(𝑡) = 𝑓𝑡(𝑋observed, 𝑦observed),

where 𝑦(𝑡) denotes the predicted values of the feature 𝑦 at iteration 𝑡, 𝑓𝑡 represents

the regression model trained at iteration 𝑡, and (𝑋observed, 𝑦observed) denotes the subset

of the data comprising observed values of both 𝑋 and 𝑦.

Hyperparameters

There are different strategies to handle missing values. In this work mean of each

column is used to replace missing values. Since we have missing values in different

columns, we can define the order in which the features will be imputed, for example,

in ascending order, from features with the fewest missing values to the most, or in

descending. Moreover, the imputation model uses estimators at each step of the
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round-robin imputation. Since a high correlation between target values is the motive

to impute missing values, some linear regression algorithms, like Lasso and Ridge,

are applied. Tree models tend to keep similar values and do not produce out-of-range

values, thus, DT and boosted tree (XGBoost), are also considered. The first three

models are described in sections 3.4.2, 3.4.3.

XGBoost (eXtreme GB) [14] is based on the principle of GB (see 3.4.5). XG-

Boost extends traditional GB by incorporating additional regularization terms in the

objective function. The objective function of XGBoost is a sum of the loss function

𝐿 and regularization terms Ω, which control the complexity of the model and help

prevent overfitting:

Objective =
𝑛∑︁

𝑖=1

𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖)) +
𝐾∑︁
𝑘=1

Ω(𝑓𝑘)

The regularization terms (Ω) can include penalties on the complexity of individual

trees, such as L1 or L2 regularization on leaf weights, as well as penalties on the

number of leaves or the depth of the trees.

XGBoost uses a different approach called "leaf-wise" tree growth. In leaf-wise

growth, XGBoost grows the tree node-by-node, expanding the node that provides the

maximum reduction in the objective function.

Unlike traditional GB algorithms, XGBoost leverages parallel processing tech-

niques.

Evaluation

Evaluating imputation results is a challenging task. There are different criteria to

assess imputation performance. In this work, the sum of relative errors is chosen

as evaluation criterion.

Relative error is typically calculated as the absolute difference between the true

value and the predicted value, divided by the true value. Mathematically, for a single
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data point, the relative error (𝑅𝐸) is calculated as:

𝑅𝐸 =
|𝑡𝑟𝑢𝑒_𝑣𝑎𝑙𝑢𝑒− 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒|

𝑡𝑟𝑢𝑒_𝑣𝑎𝑙𝑢𝑒

The sum of relative errors is then computed across all data points.

To ensure the robustness of the selected imputation model, a cross-validation pro-

cedure should be performed. In this work, the cross-validation involves randomly

removing different amounts of data from the original dataset multiple times (e.g.,

removing 10, 100, 1000, and 10000 data points). For each iteration of the cross-

validation, imputation is performed on the modified datasets using the chosen impu-

tation model. This entire process is repeated multiple times (5) to obtain a robust

estimate of the imputation model’s performance across different subsets of the data.

The imputation model that consistently yields the lowest sum of relative errors across

the cross-validation iterations is selected as the best model for handling missing values

in the dataset. In other words, at each iteration models are ranked by their evalu-

ation results, and multi-ranking is performed with Order-weighted Average [15]. In

this method, each ranking is assigned a weight. In our case, weights are determined

by the degree of 10 (i.e., 1 for 10 data points removed, 2 for 100 data points removed,

etc.). Then, the rankings are combined by taking a weighted average of the ranks for

each item.

3.3 Feature Engineering

A key part of the data preparation phase in ML is a feature engineering. During

feature engineering, the features are extracted from the raw data. The selection of

features is critical for building ML models and could affect the overall performance.

3.3.1 Molecular representation

In the case of chemistry-related tasks, there are various ways to define chemical

compounds by machine-readable molecular representations. Representing chemical
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data in an unambiguous ways, understandable both by humans and computers, is a

challenging task. No representation is perfect for every circumstance, it depends on

many factors as well as space constraints. This section provides some knowledge on

available molecular representations used to build ML models.

The data is provided with SMILES notations both for chromophore and solvent

compounds. SMILES, a Simplified molecular-input line-entry system represents or-

ganic molecules with a string of ASCII characters. String representations can be

treated as words, and concepts from natural language processing can be applied to

solve chemistry-related problems. This work does not dive into this field, rather the

numerical data from molecular formula, SMILES, is extracted as in the traditional

way of ML.

3.3.2 Molecular descriptors

One can represent chemical data through molecular descriptors. Molecular descriptors

are numerical representations derived from the structural characteristics of molecules [9,

10]. These descriptors encompass a diverse array of properties, including constitu-

tional, topological, geometrical, and electronic features. Careful selection of descrip-

tors is crucial to balance informativeness with computational efficiency and model

interpretability.

Molecular descriptors can be divided into two types: experimental and theoretical

descriptors.

Experimental descriptors

Experimental descriptors are physical properties obtained by experimental observa-

tions or numerical simulations, such as 𝑙𝑜𝑔𝑃 , dipole moment, and, in general, additive

physicochemical properties.
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Theoretical descriptors

Theoretical representations, on the other hand, are generated computationally based

on theoretical models and simulations. These representations leverage principles from

quantum mechanics, molecular mechanics, or statistical mechanics to predict molecu-

lar structures and properties. Theoretical representations can be further categorized

based on their dimensionality.

One-dimensional representations encapsulate molecular structures along a

single axis, typically representing sequences of atoms or chemical bonds. Examples

include SMILES (Simplified Molecular Input Line Entry System) notations, a count

of different functional groups. 1D representations provide a compact and portable

format for representing molecular structures but may lack spatial information.

Two-dimensional representations capture the planar connectivity of atoms

within a molecule, preserving information about bond types, angles, and functional

groups. Notable examples include molecular graphs, adjacency matrices, and molec-

ular fingerprints such as Extended Connectivity Fingerprints (ECFP) and MACCS

keys. 2D representations are more complex as well as still interpretable.

Three-dimensional representations encode the full spatial arrangement of

atoms in three-dimensional space, accounting for bond angles, torsional angles, and

interatomic distances. Molecular conformations, molecular mechanics force fields,

and molecular docking poses are examples of 3D representations commonly used in

computational chemistry. While 3D representations provide the most detailed insight

into molecular structure, they are computationally expensive to generate and may

require specialized modeling techniques.

3.3.3 Feature extraction

In this study, the RDKit library, and PaDEL-Descriptor software were employed

to compute a diverse set of molecular descriptors from the molecular representations.

RDKit, a popular open-source cheminformatics toolkit, provides a comprehensive

suite of functions for molecular manipulation and descriptor calculation. PaDEL cal-
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culates different kinds of molecular descriptors and fingerprints, using the Chemistry

Development Kit (CDK). The total size of feature space is 13206 descriptors (6603

for each of chromophore and solvent in combination).

Overview of the extracted descriptors

This work leverages 1D and 2D descriptors and fingerprints. Generally speaking, the

term "fingerprint" implies that the following representation is in the form of a numer-

ical vector. If it is not indicated as a fingerprint or any other representation, then the

descriptor means that it is a single numerical value. Next, overview of single descrip-

tors is provided. Table 3.5 captures information about extracted descriptors from

RDKit, their dimensionality, and brief definitions. Table 3.6 captures information

about another set of fragmental (substructures in the graph) descriptors extracted in

this work from RDKit [16]. Total number of descriptors is 189.

Table 3.5: Descriptors from RDKit

Descriptor Type Definition Paper
MolWt 1D Molecular Weight

NumAtoms 1D Number of Atoms
NumHeavyAtoms 1D Number of Heavy Atoms
NumHeteroatoms 1D Number of Heteroatoms

NumAliphaticCarbocycles 1D Number of AliphaticCarbocycles
NumAliphaticHeterocycles 1D Number of AliphaticHeterocycles

NumAliphaticRings 1D Number of Aliphatic Rings
NumAmideBonds 1D Number of Amide Bonds
NumSpiroAtoms 1D Number of SpiroAtoms

NumAromaticCarbocycles 1D Number of Aromatic Carbocycles
NumAromaticHeterocycles 1D Number of Aromatic Heterocycles

NumAromaticRings 1D Number of Aromatic Rings
NumHeterocycles 1D Number of Heterocycles

NumRings 1D Number of Rings
NumRotatableBonds 1D Number of Rotatable Bonds

NumSaturatedCarbocycles 1D Number of Saturated Carbocycles
NumSaturatedHeterocycles 1D Number of Saturated Heterocycles

NumSaturatedRings 1D Number of Saturated Rings
NumHBA, 1D Number of Hydrogen Bond Acceptors
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Descriptor Type Definition Paper

NumLipinskiHBA 1D
Number of Hydrogen Bond Acceptors

calculated according to
Lipinski’s Rule of Five

NumHBD 1D Number of Hydrogen Bond Donors

NumLipinskiHBD 1D
Number of Hydrogen Bond Donors

calculated according to
Lipinski’s Rule of Five

Chi0v, Chi1v, Chi2v,
Chi3v, Chi4v, Chi0n,
Chi1n,Chi2n, Chi3n,

Chi4n, HallKierAlpha ,
Kappa1, Kappa2, Kappa3

2D
Molecular Connectivity

Chi Indexes and
Kappa Shape Indexes

[17]

BalabanJ 2D

Balaban J index,
Topological index,

the degree of branching
and cyclicity

[18]

BertzCT 2D

Bertz Chemical
Topology index,

the complexity or structural
diversity of molecules

IPC 2D

The information content
of the coefficients of the
characteristic polynomial
of the adjacency matrix
of a hydrogen-suppressed

graph of a molecule

[19]

MolLogP, MolMR 2D Wildman-Crippen
logP and MR value [20]

FpDensityMorgan 2D Morgan fingerprint density [21]

LabuteASA 1D Labute’s Approximate
Surface Area [22]

PEOE-VSA1 – PEOE-VSA14 2D

MOE Charge VSA Descriptor.
The approximate accessible
van der Waals surface area
calculation for each atom

along with the contribution
to partial charge

[22]
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Descriptor Type Definition Paper

SlogP-VSA1 – SlogP-VSA12 2D

MOE logP VSA Descriptor.
The approximate accessible
van der Waals surface area
calculation for each atom

along with the contribution
to the Log of the octanol/water

partition coefficient

[22]

SMR-VSA1 – SMR-VSA10 2D

MOE SMR VSA Descriptor.
The approximate accessible
van der Waals surface area
calculation for each atom

along with the contribution
to Molar Refractivity

[22]

TPSA 1D Topological polar surface area [23]

EState-VSA1 – EState-VSA11 2D

EState VSA Descriptor.
MOE-type descriptors

using electrotopological state
indices and surface area

contributions
VSA-EState1 – VSA-EState10 2D VSA EState Descriptor

Table 3.6: Fragmental descriptors from RDKit

Fragment Definition
fr-Al-COO Number of aliphatic carboxylic acids
fr-Al-OH Number of aliphatic hydroxyl groups

fr-Al-OH-noTert Number of aliphatic hydroxyl groups
excluding tert-OH

fr-ArN Number of N functional groups attached to aromatics
fr-Ar-COO Number of Aromatic carboxylic acids

fr-Ar-N Number of aromatic nitrogens
fr-Ar-NH Number of aromatic amines
fr-Ar-OH Number of aromatic hydroxyl groups
fr-COO Number of carboxylic acids
fr-COO2 Number of carboxylic acids
fr-C-O Number of carbonyl

fr-C-O-noCOO Number of carbonyl O, excluding COOH
fr-C-S Number of thiocarbonyl

fr-HOCCN Number of C(OH)CCN-Ctert-alkyl or C(OH)CCNcyclic
fr-Imine Number of Imines
fr-NH0 Number of Tertiary amines
fr-NH1 Number of Secondary amines
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Fragment Definition
fr-NH2 Number of Primary amines
fr-N-O Number of hydroxylamine groups

fr-Ndealkylation1 Number of XCCNR groups
fr-Ndealkylation2 Number of tert-alicyclic amines

fr-Nhpyrrole Number of H-pyrrole nitrogens
fr-SH Number of thiol groups

fr-aldehyde Number of aldehydes
fr-alkyl-carbamate Number of alkyl carbamates

fr-alkyl-halide Number of alkyl halides
fr-allylic-oxid Number of allylic oxidation sites

fr-amide Number of amides
fr-amidine Number of amidine groups
fr-aniline Number of anilines

fr-aryl-methyl Number of aryl methyl sites for hydroxylation
fr-azide Number of azide groups
fr-azo Number of azo groups

fr-barbitur Number of barbiturate groups
fr-benzene Number of benzene rings

fr-benzodiazepine Number of benzodiazepines with
no additional fused rings

fr-bicyclic Number of bicyclic rings
fr-diazo Number of diazo groups

fr-dihydropyridine Number of dihydropyridines
fr-epoxide Number of epoxide rings
fr-ester Number of esters
fr-ether Number of ether oxygens
fr-furan Number of furan rings

fr-guanido Number of guanidine groups
fr-halogen Number of halogens
fr-hdrzine Number of hydrazine groups
fr-hdrzone Number of hydrazone groups

fr-imidazole Number of imidazole rings
fr-imide Number of imide groups

fr-isocyan Number of isocyanates
fr-isothiocyan Number of isothiocyanates

fr-ketone Number of ketones
fr-ketone-Topliss Number of ketones excluding diaryl, a,b-unsat.

fr-lactam Number of beta lactams
fr-lactone Number of cyclic esters
fr-methoxy Number of methoxy groups -OCH3

fr-morpholine Number of morpholine rings
fr-nitrile Number of nitriles
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Fragment Definition
fr-nitro Number of nitro groups

fr-nitro-arom Number of nitro benzene ring substituents

fr-nitro-arom-nonortho Number of non-ortho nitro benzene
ring substituents

fr-nitroso Number of nitroso groups, excluding NO2
fr-oxazole Number of oxazole rings
fr-oxime Number of oxime groups

fr-para-hydroxylation Number of para-hydroxylation sites
fr-phenol Number of phenols

fr-phenol-noOrthoHbond Number of phenolic OH excluding ortho
intramolecular Hbond substituents

fr-phos-acid Number of phosphoric acid groups
fr-phos-ester Number of phosphoric ester groups
fr-piperdine Number of piperdine rings
fr-piperzine Number of piperzine rings
fr-priamide Number of primary amides

fr-prisulfonamd Number of primary sulfonamides
fr-pyridine Number of pyridine rings
fr-quatN Number of quarternary nitrogens
fr-sulfide Number of thioether

fr-sulfonamd Number of sulfonamides
fr-sulfone Number of sulfone groups

fr-term-acetylene Number of terminal acetylenes
fr-tetrazole Number of tetrazole rings
fr-thiazole Number of thiazole rings
fr-thiocyan Number of thiocyanates
fr-thiophene Number of thiophene rings

fr-unbrch-alkane Number of unbranched alkanes
fr-urea Number of urea groups

Overview of the extracted fingerprints

Table 3.7 shows overview of molecular fingerprints utilized in this work, feature ex-

traction tools and original papers.

Morgan fingerprints, also known as circular fingerprints, are introduced in [21].

Morgan fingerprints are based on identifying substructures, often called circular sub-

structures, around each atom in the molecule. These circular substructures are formed

by traversing the molecular graph from each atom, considering a certain radius or dis-

tance cutoff. Each circular substructure is converted into a unique identifier using
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Table 3.7: Molecular fingerprints with source library

Source Fingerprint name Paper Length

RDKit

Morgan fingerprints [21] 2048
Avalon fingerprints [24] 512

MACCSkeys fingerprints [25] 167
EState fingerprints [26] 79

PaDEL

CDK fingerprints 1024
CDK Extended fingerprints 1024

Atom pairs fingerprints [27] 780
Atom pairs count fingerprints [27] 780

hashing method. This work considers a fixed-length (2048) binary vector, where each

element represents the presence or absence of a specific substructure.

Avalon fingerprints, first introduced in [24], are derived from the three-dimensional

(3D) structures of molecules and capture information about their shape, size, and

chemical properties. Multiple conformers (different spatial arrangements) of each

molecule are generated to capture its flexibility and conformational variability.

MACCS keys, short for "Molecular ACCess System Keys", are the simplest and

most restrictive fingerprint implemented in RDKit and introduced in [25]. It counts

the occurrences of a collection of pre-defined, expert-derived substructures that are

commonly used to quantify pharmacologically relevant molecular similarity. The

fingerprints can only be accessed in dense bit vector format.

EState (Extended State) [26] is a method for encoding molecular structure in-

formation into numerical descriptors. EState descriptors are based on the concept

of assigning partial charges to each atom in a molecule. These partial charges are

calculated based on the electronegativity of the atoms and their bonding environment

within the molecule.

Atom pair fingerprints were first introduced in [27]. These fingerprints capture

pairwise interactions between atoms within a molecule and are widely used in similar-

ity searching, virtual screening, and other molecular modeling applications. An atom

pair substructure is defined as a triplet of two (non-hydrogen) atoms and their short-

est path distance in the molecular graph, i.e. (atom type 1, atom type 2, geodesic

distance). In the standard RDKit implementation, distinct atom types are defined
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by tuples of atomic number, number of heavy atom neighbours, aromaticity, and chi-

rality. All unique triplets in a molecule are enumerated and stored in sparse count or

bit vector format.

CDK fingerprints, or CDK molecular fingerprints, are a type of molecular finger-

printing method implemented in the Chemistry Development Kit (CDK), an open-

source Java library for cheminformatics. Molecular fingerprints are numerical repre-

sentations of molecular structure and properties. These features can include func-

tional groups, ring systems, etc. Moreover, CDK Extended fingerprints are also

presented. They provide a more detailed representation of molecular structure and

properties compared to simpler version. They capture a broader range of chemical

features and interactions.

3.4 Predictive Modeling

After data processing steps models can be built to make predictions. Choosing the

appropriate algorithm is essential for making sophisticated predictions. This section

discusses algorithms leveraged in this work and shed light on some basic concepts

behind them.

3.4.1 Common approach

Overall, ML can be classified as supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning. Making predictions refers to a super-

vised learning case since a target label is available. There are two tasks in supervised

learning: regression and classification; they are divided based on whether the target

is numerical (continuous) or categorical (discrete) respectively. This work consists

of some widely used supervised learning algorithms like linear regression, tree-based

models, and K- nearest neighbours (KNN).

Common ML workflow considers various steps starting from data collection to

model deployment. After data processing one can start model configuration. This

involves three steps: training, hyperparameter tuning, and testing.
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Training includes model selection and training the selected model (with defined

loss function and optimization) on some portion of available data, which is called

train data. Then, one adjusts the hyperparameters of the selected model by assessing

its performance on validation data, another portion of available data. To perform

hyperparameter tuning grid search or random search of values can be used. Sometimes

it is beneficial to perform cross-validation, and assess the performance across multiple

subsets of the data. A separate portion of the data, known as a test set, not seen by

the model during the first two steps, is used to evaluate the performance of the model.

It is done to check how well the model generalizes the new, unseen data, ensuring

that it does not overfit. Overfitting means that the model gives accurate predictions

to the train data but not to unseen data, failing at capturing the general pattern as

a result of relying on outliers in the train data.

3.4.2 Linear regression: Lasso and Ridge

Linear regression [28] is a statistical method used for modeling the relationship be-

tween target values and features. The goal is to find the best-fitting linear line that

predicts the target labels.

Linear regression makes several assumptions, including:

1. The relationship between the target and features is linear.

2. The residuals, the differences between predicted and true values, are indepen-

dent

3. The variance of the residuals is constant across all levels of the independent

variables.

4. The residuals are normally distributed.

if the assumptions are violated, it might affect the accuracy of the model.

Given a data set {𝑦𝑖, 𝑥𝑖1, ..., 𝑥𝑖𝑝}𝑛𝑖=1 of 𝑛 data points, model assumes relation be-

tween target (dependent variable) 𝑦 and features (independent variables) 𝑥𝑝 linear
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and takes the following form:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ...+ 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖 = 𝑥𝑇
𝑖 𝛽 + 𝜖𝑖,

where, 𝛽 = [𝛽0, 𝛽1, ..., 𝛽𝑝] is a parameter vector (regression bias and coefficients), 𝜖 is

an error term, 𝑇 denotes transpose, and 𝑥𝑖 is extended to 𝑥𝑖 = [1, 𝑥𝑖1, ...𝑥𝑖𝑝] to get a

dot product.

Fitting a linear model requires estimating regression coefficients such that the

error term is minimized. It is common to use ||𝜖||22 as a minimization measure. This

method is called Ordinary Least squares. The objective is to solve

min
𝛽

𝐿 = min
𝛽

𝑛∑︁
𝑖=1

(𝑦𝑖 −−𝑥𝑇
𝑖 𝛽)

2

Putting the independent and dependent variables in matrices 𝑋 and 𝑌 respectively

the loss function can be rewritten as:

𝐿 = ||𝑌 −𝑋𝛽||2 = (𝑌 −𝑋𝛽)𝑇 (𝑌 −𝑋𝛽) = 𝑌 𝑇𝑌 − 𝑌 𝑇𝑋𝛽 − 𝛽𝑇𝑋𝑇𝑌 + 𝛽𝑇𝑥𝑇𝑋𝛽

The loss is convex, and according to finding optimum solution after setting the

gradient to zero, the optimum parameter is produced as follows:

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌.

Lasso Regression

A common problem of the linear regression model is that it might overfit and mul-

ticollinearity (high correlation between independent variables). To address this issue

we introduce two regularization techniques Lasso and Ridge.

Lasso, short for Least Absolute Shrinkage and Selection Operator, also known as

L1 regularization, is a regularization technique [29]. It introduces a penalty term to

the loss function as follows:
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min
𝛽

(𝐿+ 𝜆

𝑝∑︁
𝑗=1

|𝛽𝑗|),

where 𝜆 is the regularization parameter, controlling the penalty term.

L1 norm added to loss functions tends to set some coefficients to zero, subse-

quently, excluding less relevant features. Thus, it is used for feature selection.

The choice of the regularization parameter is critical. A larger 𝜆 means stronger

regularization, setting more coefficients to exact zero. Cross-validation is often used

to find the optimal value of 𝜆 and it is considered as a hyperparameter.

Ridge Regression

Ridge Regression, also known as Tikhonov Regularization or L2 regularization, is

another regularization technique used in linear regression [30]. A penalty term is

added to the OLS objective function as follows:

min
𝛽

(𝐿+ 𝜆

𝑝∑︁
𝑗=1

𝛽2
𝑗 ),

where 𝜆 is the regularization parameter, a hyperparameter addressed during cross-

validation stage.

Unlike Lasso, Ridge does not set coefficients to exact zero, making different fea-

tures contribute to the prediction.

3.4.3 DT

The DT is a typical classification model, also it might be used for regression tasks [31].

DT works by recursively partitioning the data into subsets based on the features

of the dataset. The algorithm makes decisions at each node of the tree based on the

values of the features ultimately leading to a predicted outcome.

• Roof Node: Topmost node in the tree, which represents the complete dataset,

starting point of the decision-making process

• Splitting: Process of dividing a node into two or more child nodes
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• Decision Node: Child node that can be further divided into other child nodes

• Leaf Node: Terminal node without any child node, represents the final out-

come

• Pruning: Process of removing branches from a tree, used to prevent overfitting

Simple Algorithm

DT algorithm works as follow:

Algorithm 2 DT Construction
1: Begin the tree with the root node
2: Find the best feature based on certain criteria
3: Split data into smaller subsets based on the chosen feature
4: For each subset, repeat steps 2-3 until the stopping criterion is met

Feature Selection Measures

For regression task there are some common splitting criteria. Criteria such as Squared

Error, Friedman Mean Squared Error, and Poisson are considered in this work.

Squared Error (Mean Squared Error - MSE) measures the average squared

difference between the actual target values (𝑦𝑖) and the predicted values (𝑦𝑖). For a

dataset with 𝑛 instances, MSE is calculated as:

MSE =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2,

where 𝑦𝑖 represents the actual target value of the 𝑖-th instance, and 𝑦𝑖 represents

the predicted target value of the 𝑖-th instance.

Friedman Mean Squared Error (Friedman MSE), introduced by Jerome H.

Friedman, extends the concept of MSE with an improvement score, making it partic-

ularly suitable for GB regression algorithms. It aims to optimize the mean squared

error while considering the improvement gained by splitting at a node. Mathemati-

cally, it’s quite similar to MSE, but with adjustments for the improvement score.
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The Poisson criterion is used when the target variable follows a Poisson distribu-

tion. The Poisson deviance is minimized, which is analogous to minimizing the mean

squared error in ordinary least squares regression but tailored for Poisson-distributed

data. The Poisson deviance is calculated as:

Poisson Deviance = 2
𝑛∑︁

𝑖=1

(︂
𝑦𝑖 log

(︂
𝑦𝑖
𝑦𝑖

)︂
− (𝑦𝑖 − 𝑦𝑖)

)︂
,

where 𝑦𝑖 represents the actual target value of the 𝑖-th instance, and 𝑦𝑖 represents

the predicted target value of the 𝑖-th instance.

Stopping conditions

Stopping conditions used in this work consist of setting maximum depth and minimum

leaf samples. Maximum depth is the limit of the depth of the tree to avoid overfitting.

Minimum leaf samples is a minimum number of samples required to be a leaf node,

which may be treated as smoothing criteria

3.4.4 Ensemble method: Random Forest

Ensemble learning methods use multiple learning algorithms to achieve better pre-

dictive performance. One such ensemble learning model is RF [32].

Core of Random Forest: Decision Trees

RF operates by constructing a multitude of DT (or forests) during training and an

outputting the average of predictions of the individual trees. Individual trees tend

to grow very deep and learn irregular patterns, and fail at generalization. RF is a

way of averaging multiple DT. Moreover, when building each DT, RF consider only

a random subset of the features at each split. This helps to overcome the issue of

overfitting since it has added benefit of randomness to the mode.
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Bagging

The training algorithm involves bootstrap aggregating, or bagging, to tree learners.

It utilizes bootstrap sampling to create multiple subsets of the training data. This

involves randomly sampling the training data with replacement. Each subset, called

a bootstrap sample, is used to train a separate DT.

Algorithm 3 Bagging
1: Input: Training set 𝑋 with labels 𝑌 , number of trees 𝑁
2: for 𝑖 = 1 → 𝑁 do
3: Sample, with replacement, 𝑛 training examples from 𝑋, 𝑌 ; call these 𝑋𝑖, 𝑌𝑖

4: Train a classification or regression tree 𝑓𝑖 on 𝑋𝑖, 𝑌𝑖

5: Output: RF model consisting of 𝑁 trees {𝑓1, . . . , 𝑓𝑁}
6: Average predictions from all individual trees:

𝑓 =
1

𝑁

𝑁∑︁
𝑖=1

𝑓𝑖().

Basic Algorithm

Algorithm 4 represents the simple algorithm of RF.

Algorithm 4 RF Algorithm
1: Input: Training dataset with features 𝑋 and labels 𝑌 , number of trees to grow

𝑁 , number of features to consider at each split 𝑚
2: for 𝑖 = 1 → 𝑁 do
3: Create a bootstrap sample by randomly sampling 𝑛 examples with replacement

from the training data.
4: Randomly select 𝑚 features from the total 𝑝 features.
5: Train a DT using the bootstrap sample and the selected features:
6: - At each node, choose the best split based on a chosen criterion (e.g., Gini

impurity for classification, mean squared error for regression).
7: - Continue recursively partitioning the data until a stopping criterion is met

(e.g., maximum depth, minimum samples per leaf).
8: Store the trained tree.
9: Output:

For classification: Aggregate predictions by majority voting among all trees.
For regression: Aggregate predictions by averaging the outputs of all trees.
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3.4.5 Ensemble method: Gradient Boosting

GB is another powerful ensemble learning method [33]. The general idea is that it

works by sequentially adding weak learners, like DTs, to the ensemble, where each

new learner is trained to correct the errors made by the previous learners.

Model Training Process

The GB process involves the following steps:

1. Initialization: A simple model is initialized to make initial predictions. For

regression, this could be the mean of the target variable, and for classification,

it could be the mode.

2. Sequential Learning: Additional weak learners (trees) are sequentially added

to the ensemble. Each new learner focuses on minimizing the errors made by

the ensemble so far.

3. Gradient Descent Optimization: At each iteration, the new learner is

trained to minimize the residual errors of the ensemble by adjusting its pre-

dictions using gradient descent.

4. Shrinkage (Learning Rate): To control the contribution of each new learner

and prevent overfitting, a shrinkage parameter, also known as the learning rate,

is introduced.

Algorithm 5 GB Training
1: Input: Training dataset with features 𝑋 and labels 𝑌 , number of trees 𝑁 , shrink-

age parameter 𝜂

2: Initialize model: 𝑓0(𝑥) = initial_model(𝑋, 𝑌 )

3: for 𝑖 = 1 → 𝑁 do

4: Compute residuals: 𝑟𝑖 = 𝑌 − 𝑓𝑖−1(𝑋)

5: Fit base learner ℎ𝑖 to residuals: ℎ𝑖 = base_learner(𝑋, 𝑟𝑖)

6: Update model: 𝑓𝑖(𝑥) = 𝑓𝑖−1(𝑥) + 𝜂 · ℎ𝑖(𝑥)

7: Output: GB model 𝑓(𝑥) =
∑︀𝑁

𝑖=0 𝜂 · ℎ𝑖(𝑥)
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Hyperparameters

Along with hyperparameters of core trees such as depth of tree, samples per leaf, also

number of trees, there are hyperparameters that determines sequential manner. In

this work, learning rate and loss functions are optimized. Here are explanations for

some commonly used loss functions in GB.

Squared Error, also known as Mean Squared Error (MSE), is a widely used

loss function in GB regression. It measures the average squared difference between

the actual target values (𝑦𝑖) and the predicted values (𝑦𝑖). Mathematically, MSE is

defined as:

MSE =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2,

where 𝑛 is the number of instances, 𝑦𝑖 represents the actual target value of the

𝑖-th instance, and 𝑦𝑖 represents the predicted target value of the 𝑖-th instance.

GB with MSE loss typically results in predictions that converge towards the mean

of the target values, as the algorithm minimizes the squared differences between the

actual and predicted values.

Absolute Error, also known as Mean Absolute Error (MAE), is another loss

function used in GB regression. It measures the average absolute difference between

the actual target values (𝑦𝑖) and the predicted values (𝑦𝑖)). Mathematically, MAE is

defined as:

MAE =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|.

MAE is less sensitive to outliers compared to MSE because it doesn’t square the

errors. Therefore, GB with MAE loss might be more robust to outliers in the data.

Huber Loss is a hybrid loss function that combines the characteristics of MSE

and MAE. It behaves like MSE for small errors but like MAE for large errors, making

it less sensitive to outliers while still being differentiable everywhere. The Huber Loss

function is defined as:
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Huber(𝑦, 𝑦) =

⎧⎪⎨⎪⎩
1
2
(𝑦 − 𝑦)2 if |𝑦 − 𝑦| ≤ 𝛿

𝛿(|𝑦 − 𝑦| − 1
2
𝛿) otherwise

,

where 𝛿 is a threshold parameter that determines when the loss transitions from

quadratic to linear. Typically, 𝛿 is set based on heuristics or cross-validation.

Huber Loss provides a compromise between the robustness of MAE and the effi-

ciency of MSE, making it suitable for scenarios where the data may contain outliers

but still benefit from leveraging squared errors for small deviations.

3.4.6 K-Nearest Neighbours

KNN [34] is a simple ML algorithm, belongs to lazy learning algorithm. Lazy learning

means that it processes train data only to make. The idea behind KNN to make

predictions for a new data point based on the majority label or the average of the

K-nearest data points for classification or regression tasks respectfully.

Algorithm

The simple algorithm of KNN is as follows.

Algorithm 6 K-Nearest Neighbors (KNN)
Require: Training data set: 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, Test data set: 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎, Value of 𝐾: 𝑘
Ensure: Predicted labels for test data set
1: Select value of 𝐾 (number of nearest neighbors).
2: for each data point in 𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎 do
3: Calculate distance between the current test data point and all training data

points using some distance metric.
4: Find the 𝐾 data points among 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎 with the smallest distance based

on the chosen distance measure. These are the nearest neighbors.
5: if Classification task then
6: Determine the class labels of the 𝐾 nearest neighbors by majority voting.
7: The class with the highest occurrence becomes the predicted class for the

current test data point.
8: if Regression task then
9: Calculate the class label for the current test data point by taking the

average of the target values of the 𝐾 nearest neighbors.
return Predicted labels for the entire test data set.
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Hyperparameters

The choice of distance and average measures affect the performance of the model.

Euclidean distance is the cartesian distance between the two points which are

hyperplane, and calculated as follows:

𝑑(𝑥, 𝑦) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2.

Manhattan Distance, also known as Taxicab distance, is the distance between

two points measured along axes at right angles, and calculated as follows:

𝑑(𝑥, 𝑦) =
𝑛∑︁

𝑖=1

|𝑥𝑖 − 𝑦𝑖|.

Both Euclidean distance and Manhattan distance are special cases of the Minkowski

distance:

𝑑(𝑥, 𝑦) = (
𝑛∑︁

𝑖=1

(𝑥𝑖 − 𝑦𝑖)
𝑝)

1
𝑝 ,

with 𝑝 = 2 and 𝑝 = 1 respectfully.

Predicting target value is performed by majority rule. All points in each neighbor-

hood can be used in prediction with the same weight, or with weight by the inverse

of their distances, i.e. closer neighbours will have a greater influence.

3.4.7 Evaluation metrics

During hyperparameter tuning and testing when the evaluation is performed, eval-

uation metrics (loss functions) are considered. There are different common metrics

for regression tasks [35]. Mean Squared Error (MSE) is the average of squared

differences between predicted and actual values, and calculated as follows:

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2,

where 𝑦𝑖 is a true value, 𝑦𝑖 is a predicted value, and 𝑛 is a number of data points.
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Sometimes the square root of the MSE or Root Mean Squared Error (RMSE)

is considered.

Mean Absolute Error (MAE) is the average of absolute differences between

true and predicted values, and calculated as follows:

𝑀𝐴𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|.

Additionally, the mean of absolute difference divided to the true value, or Mean

Absolute Percentage Error (MAPE) can be considered as a loss funtion.

R-squared or Coefficient of the determination (𝑅2) represents the propor-

tion of variance in the dependent variable explained by the independent variables,

and is calculated as follows:

𝑅2 = 1−
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
,

where 𝑦 is the mean of true values.

3.5 Research workflow

Fig. 3-2 illustrates the general workflow of the work. In general, raw data is being

handled with the help of some imputation and feature engineering approaches to

produce imputed data. Imputed data as well as original data is utilized to train

ML regression models. The process is repeated for different combinations of models.

Testing evaluates not only predictions but also the success of imputation and feature

engineering.

53



Figure 3-2: Research workflow diagram
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Chapter 4

Results

4.1 Imputation

Before training and hyperparameter selection, one should process data. There are

missing values in the dataset, thus, there is an opportunity to expand the dataset to

provide a more complete information analysis. Therefore, we perform imputation, and

"augment" the dataset by filling in those missing values. Imputation methodology is

described previously in section 3.2.2, this section covers the results after the selection

of the best imputation models.

4.1.1 Hyperparameter tuning of imputers

As mentioned before, in this work imputation algorithms such as Iterative Imputer

and Nearest Neighbours are utilized. Iterative Imputer uses Decision Tree, XGBoost,

Linear, and Ridge regression models as core estimators. During hyperparameter

tuning, hyperparameters of estimators, like maximum depth of tree, or regularization

strength, are also selected along with imputation strategies.

Table 4.1 shows the hyperparameter set of each model used as an imputer, and

also the strategy regarding imputation strategy.
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Table 4.1: Imputation strategy: hyperparameter tuning

Model Hyperparameter Definition Parameter grid
Iterative
Imputer imputation_order order in which the features

will be imputed
ascending,
descending

Iterative
Imputer:
Linear

Iterative
Imputer :

Ridge
alpha regularization strength 1, 10, 102, 103, 104, 105

Iterative
Imputer:
XGBoost

eta step size shrinkage 0.1, 0.3, 0.5
max_depth maximum depth of tree 3, 6, 10

gamma minimum loss reduction 0, 0.1, 1

Iterative
Imputer:

Decision Tree

criterion function to measure
the quality of a split

squared error,
friedman mse,

poisson
max_depth maximum depth of tree 5, 10, 50

min_samples_leaf
minimum number of

samples required to be
a leaf node

5, 10, 15

Nearest
Neighbours

Imputer

n_neigbours number of neighbours 5, 10, 15, 25

weights weight function used
in prediction uniform, distance

4.1.2 Evaluation of imputation models

As described before, for the validation purposes random points from original data are

being removed. Then, each imputer is used repeatedly on each produced data, and

the sum of relative errors is calculated. Imputers are ranked at each step, then ranks

are aggregated, and imputer with consecutively better results is chosen as the best.

Table 4.2 shows best selected models ranking at each step of data removal.

Figure 4-1 shows growth of the sum of relative errors with less available true data.

Each model is chosen with the best hyperparamaters. As a result, imputation with

XGBoost shows best results. Original data is imputed with this selected model.
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Table 4.2: Ranking of imputation models based on the sum of relative errors

Number of missing points
Model 10 100 1000 10000 Overall

Nearest Neighbours Imputation,
n_neighbours = 5, weights = distance

properties with descriptors
3 1 1 5 2

Nearest Neighbours Imputation,
n_neighbours = 5 ,weights = distance 10 7 5 3 5

Iterative Imputer with Ridge,
ascending order,

alpha = 105

properties with descriptors

4 4 7 6 6

Iterative Imputer with Ridge,
ascending order,

alpha = 105
5 5 8 7 7

Iterative Imputer with XGBoost,
descending order,

eta=0.5, gamma=0, max_depth=6
properties with descriptors

1 3 2 2 1

Iterative Imputer with XGBoost,
descending order,

eta=0.3, gamma=1, max_depth=6
7 2 6 1 3

Iterative Imputer with Decision Tree,
descending order,

criterion=squared_error,
min samples for leaf=5, max_depth=50

properties with descriptors

2 6 3 4 4

Iterative Imputer with Decision Tree,
descending order,

criterion = squared_error,
min_samples_leaf=10, max_depth=5

9 8 4 8 8

Iterative Imputer with Linear Regression,
descending order

properties with descriptors
6 10 10 10 10

Iterative Imputer with Linear Regression,
descending order 8 9 9 9 9
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Figure 4-1: Imputation model results : averaged sum of relative errors against number
of removed data points
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4.2 Hyperparameter tuning of predictors on original

data

As mentioned before, to predict 5 target properties number of estimators, such as

Lasso, Ridge, DT, and KNN, are used. Moreover, number of descriptors, such as

Avalon, Morgan, and more, are utilized as feature space for predictiv models. Overall

their performance has showed acceptable results. For some properties, like Quantum

yield, and Lifetime, ensemble methods, such as RF and GB are utilized. Before

constructing models, data is split into the train, validation, and test sets with a ratio

of 70% - 15% - 15% for each property on validation set hyperparameter tuning with

grid search is performed. This section captures the information on hyperparameters

of each model to be tuned and the results of the validation. Results include the overall

information on selected models to evaluate on test set, and their evaluation scores on

test set.

4.2.1 Hyperparameter set

Table 4.3 shows hyperparameter set used for tuning each model predicting each of 5

target variables. In other words, for each property the same hyperparameters from

same parameter grid are tuned.
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Table 4.3: Hyperparameter set for validation

Model Hyperparameter Definition Parameter grid

Lasso alpha regularization strength 10−5, 10−4, 10−3, 10−2, 10−1,
1, 10, 102, 103, 104, 105

Ridge alpha regularization strength 10−5, 10−4, 10−3, 10−2, 10−1,
1, 10, 102, 103, 104, 105

DT
criterion function to measure

the quality of a split
squared error,

friedman mse, poisson

min_samples_leaf
minimum number of

samples required to be
a leaf node

5, 10, 20, 50

max_depth maximum depth of tree 50, 100, 200

KNN
weights weight function used

in prediction uniform, distance

p p in Minkowski distance 1, 2
n_neigbours number of neighbours 5, 10, 15

RF
criterion function to measure

the quality of a split
squared error,

friedman mse, poisson

min_samples_leaf
minimum number of

samples required to be
a leaf node

5, 10, 20, 50

max_depth maximum depth of
individual tree 50, 100, 200

n_estimators number of estimators 50, 100, 200

GB
loss loss function

to be optimized
squared error,

absolute error, huber

learning_rate learning rate
or shrinkage 0.05, 0.1, 0.5

criterion function to measure
the quality of a split

squared error,
friedman mse

max_depth maximum depth of
individual tree 3, 6, 10
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4.2.2 Selected models after validation

This section provides the information on selected models to predict each of target

variables after validation stage.

Table 4.4 provides hyperparameters of the selected models to predict Maximum

absorption wavelength after validation.

Table 4.4: Selected models to predict Maximum absorption wavelength after valida-
tion

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Morgan 0.1 1000 friedman
mse 5 100 distance 1 5

EState 0.00001 0.01 squared
error 5 50 distance 1 5

MACCS 0.01 10 poisson 5 50 distance 1 5
Avalon 0.01 100 poisson 5 50 distance 1 5

CDK 0.1 1000 friedman
mse 5 50 distance 1 5

CDK
Extended 0.1 1000 poisson 5 50 distance 1 5

Atom Pairs 0.01 100 friedman
mse 5 50 distance 1 5

Atom Pairs
Count 0.01 100 squared

error 5 50 distance 1 5

Descriptors 0.01 1 poisson 5 50 distance 1 5

Table 4.5 provides hyperparameters of the selected models to predict Maximum

emission wavelength after validation.

Tables 4.6, 4.7 provide hyperparameters of the selected models to predict Quantum

yield after validation.

Table 4.8 provides hyperparameters of the selected models to predict Extinction

coefficient after validation.

Tables 4.9, 4.10 provide hyperparameters of the selected models to predict Lifetime

after validation.
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Table 4.5: Selected models to predict Maximum emission wavelength after validation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Morgan 0.1 1000 squared
error 5 100 distance 1 5

EState 0.1 10 squared
error 5 50 distance 1 5

MACCS 0.01 10 poisson 5 50 distance 1 5
Avalon 0.1 100 poisson 5 100 distance 1 5
CDK 0.1 1000 poisson 5 50 distance 1 5
CDK

Extended 0.1 1000 poisson 5 50 distance 1 10

Atom Pairs 0.01 10 friedman
mse 5 50 distance 1 5

Atom Pairs
Count 0.1 100 poisson 5 50 distance 1 5

Descriptors 0.01 1 poisson 5 50 distance 1 5

Table 4.6: Selected models to predict Quantum yield after validation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Avalon 0.001 1000 poisson 10 50 distance 1 10

Morgan 0.001 1000 friedman
mse 5 100 distance 1 5

MACCS 0.0001 100 poisson 5 50 distance 1 5
Atom Pairs

Count 0.001 1000 squared
error 5 50 distance 1 10

CDK 0.001 1000 friedman
mse 10 50 distance 1 10

Atom Pairs 0.001 100 squared
error 5 50 distance 1 15

CDK
Extended 00.001 1000 poisson 10 50 distance 1 10

EState 0.001 1000 squared
error 5 50 distance 1 10

Descriptors 0.001 100000 poisson 10 50 distance 1 5
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Table 4.7: Selected models to predict Quantum yield after validation (continued)

Model RF GB

Hyperp.
Repr. criterion

min
samples

leaf

max
depth

n
est. criterion learning

rate loss max
depth

Avalon poisson 50 5 200 squared
error 0.1 squared

error 10

Morgan poisson 200 5 200 squared
error 0.5 squared

error 10

MACCS poisson 50 5 50 squared
error 0.1 squared

error 10

Atom Pairs
Count poisson 50 5 200 squared

error 0.1 squared
error 10

CDK poisson 50 5 200 squared
error 0.1 squared

error 10

Atom Pairs poisson 100 5 100 squared
error 0.1 squared

error 10

CDK
Extended poisson 50 5 200 friedman

mse 0.05 squared
error 10

EState poisson 50 5 200 squared
error 0.1 squared

error 10

Descriptors poisson 50 5 200 squared
error 0.1 huber 10

Table 4.8: Selected models to predict Extinction coefficient after validation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Descriptors 0.001 10 friedman
mse 5 50 distance 1 5

EState 0.001 100 poisson 5 50 distance 1 5

MACCS 0.0001 10 squared
error 10 50 distance 1 5

Morgan 0.001 1000 poisson 5 50 distance 1 5

Avalon 0.001 1000 squared
error 10 50 distance 1 5

CDK 0.001 1000 poisson 5 50 distance 1 5
CDK

Extended 0.001 1000 friedman
mse 5 50 distance 1 5

Atom Pairs 0.001 1000 poisson 5 50 distance 1 5
Atom Pairs

Count 0.001 1000 friedman
mse 5 50 distance 1 5
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Table 4.9: Selected models to predict Lifetime after validation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Avalon 0.001 100 poisson 5 50 distance 1 5
Morgan 0.01 1000 poisson 5 100 distance 1 5
MACCS 0.0001 100 poisson 5 50 distance 1 5

Atom Pairs
Count 0.001 100 friedman

mse 5 50 distance 1 10

CDK 0.001 100 friedman
mse 10 50 distance 1 5

Atom Pairs 0.001 100 poisson 5 50 distance 1 10
CDK

Extended 0.001 100 poisson 5 50 distance 1 10

EState 1e-7 1e-5 poisson 5 50 distance 1 10
Descriptors 0.001 1 poisson 10 50 distance 1 5

Table 4.10: Selected models to predict Lifetime after validation (continued)

Model RF GB

Hyperp.
Repr. criterion

min
samples

leaf

max
depth

n
est. criterion learning

rate loss max
depth

Avalon friedman
mse 50 5 200 squared

error 0.1 huber 10

Morgan squared
error 100 5 50 squared

error 0.5 huber 10

MACCS poisson 200 5 50 squared
error 0.05 squared

error 10

Atom Pairs
Count

friedman
mse 50 5 100 squared

error 0.1 squared
error 10

CDK friedman
mse 50 5 50 friedman

mse 0.05 squared
error 10

Atom Pairs squared
error 50 5 50 squared

error 0.1 squared
error 10

CDK
Extended

friedman
mse 100 5 50 friedman

mse 0.1 huber 6

EState friedman
mse 50 5 100 squared

error 0.1 squared
error 10

Descriptors friedman
mse 50 5 100 squared

error 0.1 squared
error 10
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4.3 Hyperparameter tuning of predictors on augmented

data

After collecting imputed data, one follows feature or target imputation process as

described in section 3.2.1. Then hyperparameter tuning is performed to train models

on imputed data. This section shows the results of validating predictors on augmented

data. The hyperparameter set is kept the same as described previously in section 4.2.1.

4.3.1 Selected models after validation with feature imputation

This section provides the information on selected models to predict each of target

variables with feature imputation after validation stage. Feature imputation means

that in the features space along with extracted descriptors other target properties

(imputed, if not provided) are utilized.

Table 4.11 provides hyperparameters of the selected models to predict Maximum

absorption wavelength after validation.

Table 4.11: Selected models to predict Maximum absorption wavelength after valida-
tion of augmented data with feature imputation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Morgan 0.1 100 squared
error 5 100 distance 1 5

EState 0.1 100 poisson 5 50 distance 1 5
MACCS 0.001 10 poisson 10 50 distance 1 5
Avalon 0.01 100 poisson 5 50 distance 1 5

CDK 0.01 100 squared
error 5 50 distance 1 5

CDK
Extended 0.1 1000 poisson 10 50 distance 1 5

Atom Pairs 0.01 100 poisson 10 50 distance 1 5
Atom Pairs

Count 0.1 10 poisson 5 50 distance 1 5

Descriptors 0.001 1 poisson 5 50 distance 1 5
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Table 4.12 provides hyperparameters of the selected models to predict Maximum

emission wavelength after validation.

Table 4.12: Selected models to predict Maximum emission wavelength after validation
of augmented data with feature imputation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Morgan 0.1 100 poisson 5 50 distance 1 5

EState 0.1 100 squared
error 5 50 distance 1 5

MACCS 0.0 100 friedman
mse 5 50 distance 1 5

Avalon 0.01 100 poisson 5 50 distance 1 5

CDK 0.01 100 squared
error 10 50 distance 1 5

CDK
Extended 0.1 100 poisson 10 50 distance 2 5

Atom Pairs 0.01 10 squared
error 10 50 distance 1 5

Atom Pairs
Count 0.1 1000 squared

error 10 50 distance 1 5

Descriptors 0.00001 1 poisson 5 50 distance 1 5

Tables 4.13, 4.14 provide hyperparameters of the selected models to predict Quan-

tum yield after validation.

Table 4.15 provides hyperparameters of the selected models to predict Extinction

coefficient after validation.

Tables 4.16, 4.17 provide hyperparameters of the selected models to predict Life-

time after validation.
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Table 4.13: Selected models to predict Quantum yield after validation of augmented
data with feature imputation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Avalon 0.001 100 squared
error 10 50 distance 1 5

Morgan 0.001 1000 poisson 5 100 distance 1 5
MACCS 0.0001 10 poisson 5 50 distance 1 10

Atom Pairs
Count 0.001 1000 poisson 20 50 distance 1 5

CDK 0.001 1000 poisson 10 50 distance 1 10
Atom Pairs 0.001 100 poisson 5 50 distance 1 10

CDK
Extended 0.001 1000 poisson 5 50 distance 1 10

EState 0.001 100 poisson 10 50 distance 1 5
Descriptors 0.01 106 poisson 10 50 distance 1 5

Table 4.14: Selected models to predict Quantum yield after validation of augmented
data with feature imputation (continued)

Model RF GB

Hyperp.
Repr. criterion

min
samples

leaf

max
depth

n
est. criterion learning

rate loss max
depth

Avalon poisson 50 5 200 friedman
mse 0.1 huber 10

Morgan poisson 100 5 200 squared
error 0.1 squared

error 10

MACCS poisson 50 5 200 squared
error 0.1 squared

error 10

Atom Pairs
Count poisson 50 5 200 squared

error 0.1 squared
error 10

CDK poisson 100 5 200 friedman
mse 0.1 huber 10

Atom Pairs poisson 50 5 200 squared
error 0.1 huber 10

CDK
Extended poisson 50 5 200 squared

error 0.05 squared
error 10

EState poisson 50 5 200 friedman
mse 0.1 squared

error 10

Descriptors poisson 50 5 200 squared
error 0.1 squared

error 10
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Table 4.15: Selected models to predict Extinction coefficient after validation of aug-
mented data with feature imputation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Descriptors 0.001 10 poisson 5 50 distance 1 5

EState 0.001 100 friedman
mse 5 50 distance 1 5

MACCS 0.0001 10 poisson 5 50 distance 1 5
Morgan 0.001 1000 poisson 5 50 distance 1 5
Avalon 0.001 1000 poisson 5 50 distance 1 5
CDK 0.001 1000 poisson 10 50 distance 1 5
CDK

Extended 0.001 1000 squared
error 10 50 distance 1 5

Atom Pairs 0.001 1000 friedman
mse 5 50 distance 1 5

Atom Pairs
Count 0.001 1000 poisson 5 50 distance 1 5

Table 4.16: Selected models to predict Lifetime after validation of augmented data
with feature imputation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Avalon 0.001 100 friedman
mse 5 50 distance 1 5

Morgan 0.001 100 poisson 5 50 distance 1 5
MACCS 0.001 10 poisson 10 50 distance 1 10

Atom Pairs
Count 0.001 100 poisson 5 50 distance 1 5

CDK 0.001 100 poisson 5 50 distance 1 5

Atom Pairs 0.01 100 squared
error 20 50 distance 1 5

CDK
Extended 0.001 100 poisson 5 50 distance 2 5

EState 10−5 10−2 poisson 10 50 distance 1 5

Descriptors 0.001 1 friedman
mse 5 50 distance 1 5
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Table 4.17: Selected models to predict Lifetime after validation of augmented data
with feature imputation (continued)

Model RF GB

Hyperp.
Repr. criterion

min
samples

leaf

max
depth

n
est. criterion learning

rate loss max
depth

Avalon squared
error 200 5 200 squared

error 0.1 huber 10

Morgan poisson 50 5 50 friedman
mse 0.1 huber 10

MACCS friedman
mse 100 5 200 squared

error 0.05 squared
error 10

Atom Pairs
Count

squared
error 50 5 100 squared

error 0.1 squared
error 10

CDK squared
error 50 5 200 friedman

mse 0.1 huber 10

Atom Pairs poisson 50 5 100 squared
error 0.1 squared

error 10

CDK
Extended

friedman
mse 50 5 200 friedman

mse 0.1 squared
error 6

EState friedman
mse 20 5 200 friedman

mse 0.1 huber 10

Descriptors friedman
mse 50 5 200 friedman

mse 0.1 squared
error 10
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4.3.2 Selected models after validation with target imputation

This section provides the information on selected models to predict each of target

variables with target imputation after validation stage. Target imputation means

that along with other target properties, imputed data points are added to the train

data.

Table 4.18 provides hyperparameters of the selected models to predict Maximum

absorption wavelength after validation.

Table 4.18: Selected models to predict Maximum absorption wavelength after valida-
tion of augmented data with target imputation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Morgan 1 100 friedman
mse 20 50 distance 1 15

EState 1 100 poisson 50 50 distance 1 15
MACCS 1 100 poisson 10 50 distance 1 15
Avalon 1 1000 poisson 20 50 distance 1 15

CDK 1 100 squared
error 50 50 distance 1 15

CDK
Extended 1 100 squared

error 50 50 distance 1 15

Atom Pairs 1 1000 poisson 20 50 distance 1 15
Atom Pairs

Count 1 1000 squared
error 50 50 distance 1 15

Descriptors 0.1 106
squared
error 50 50 distance 1 15

Table 4.19 provides hyperparameters of the selected models to predict Maximum

emission wavelength after validation.

Tables 4.20, 4.21 provide hyperparameters of the selected models to predict Quan-

tum yield after validation.

Table 4.22 provides hyperparameters of the selected models to predict Extinction

coefficient after validation.

Tables 4.23, 4.24 provide hyperparameters of the selected models to predict Life-

time after validation.
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Table 4.19: Selected models to predict Maximum emission wavelength after validation
after validation of augmented data with target imputation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Morgan 1 100 squared
error 20 50 distance 1 15

EState 1 1000 squared
error 20 50 distance 2 5

MACCS 1 100 squared
error 50 50 distance 1 10

Avalon 1 100 poisson 20 50 distance 2 15
CDK 0.1 1000 poisson 50 50 distance 2 10
CDK

Extended 1 1000 poisson 20 50 distance 2 5

Atom Pairs 1 1000 poisssn 50 50 distance 2 15
Atom Pairs

Count 0.1 1000 poisson 50 50 distance 2 15

Descriptors 1 1000 squared
error 50 50 distance 1 5

Table 4.20: Selected models to predict Quantum yield after validation after validation
of augmented data with target imputation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Avalon 0.01 104 poisson 50 50 distance 2 15
Morgan 0.01 104 poisson 50 50 distance 1 15

MACCS 0.01 104
squared
error 50 50 distance 1 15

Atom Pairs
Count 0.01 104 poisson 50 50 distance 1 15

CDK 0.01 104 poisson 50 50 distance 2 15

Atom Pairs 0.01 104
squared
error 50 50 distance 1 15

CDK
Extended 0.01 104

squared
error 50 50 uniform 2 15

EState 0.01 1000 poisson 50 50 distance 1 15
Descriptors 0.01 106 poisson 50 50 distance 1 15
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Table 4.21: Selected models to predict Quantum yield after validation after validation
of augmented data with target imputation (continued)

Model RF GB

Hyperp.
Repr. criterion

min
samples

leaf

max
depth

n
est. criterion learning

rate loss max
depth

Avalon friedman
mse 50 5 200 friedman

mse 0.1 squared
error 6

Morgan poisson 100 5 200 squared
error 0.05 squared

error 10

MACCS friedman
mse 50 5 200 squared

error 0.05 huber 10

Atom Pairs
Count

squared
error 50 5 200 squared

error 0.1 squared
error 10

CDK poisson 100 5 200 squared
error 0.1 squared

error 6

Atom Pairs squared
error 50 5 100 squared

error 0.1 huber 10

CDK
Extended

friedman
mse 50 5 200 squared

error 0.05 squared
error 6

EState squared
error 100 5 200 friedman

mse 0.05 squared
error 10

Descriptors squared
error 50 5 200 friedman

mse 0.1 huber 10
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Table 4.22: Selected models to predict Extinction coefficient after validation after
validation of augmented data with target imputation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Descriptors 1 106
squared
error 50 50 distance 1 15

EState 0.01 1000 friedman
mse 50 50 distance 1 15

MACCS 0.1 104
squared
error 50 50 distance 2 15

Morgan 0.1 105 poisson 50 50 distance 2 10
Avalon 0.1 104 poisson 50 50 distance 2 15
CDK 0.1 104 poisson 50 50 distance 2 15
CDK

Extended 0.1 105 poisson 50 50 distance 2 15

Atom Pairs 0.1 105
friedman

mse 50 50 distance 2 15

Atom Pairs
Count 0.1 105

squared
error 50 50 distance 1 15

Table 4.23: Selected models to predict Lifetime after validation after validation of
augmented data with target imputation

Model Lasso Ridge Decision Tree KNN

Hyperp.
Repr. alpha alpha criterion

min
samples

leaf

max
depth weights p n

neigbours

Avalon 1 106 poisson 50 50 uniform 2 15
Morgan 1 106 poisson 50 50 uniform 2 15
MACCS 1 106 poisson 50 50 uniform 1 15

Atom Pairs
Count 0.001 100 poisson 50 50 uniform 1 15

CDK 1 106 poisson 50 50 uniform 2 15

Atom Pairs 1 106
squared
error 50 50 uniform 1 15

CDK
Extended 1 106 poisson 50 50 uniform 2 15

EState 1 106 poisson 50 50 distance 1 15

Descriptors 1 106
squared
error 50 50 distance 1 15
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Table 4.24: Selected models to predict Lifetime after validation after validation of
augmented data with target imputation (continued)

Model RF GB

Hyperp.
Repr. criterion

min
samples

leaf

max
depth

n
est. criterion learning

rate loss max
depth

Avalon poisson 100 50 100 squared
error 0.05 absolute

error 3

Morgan friedman
mse 50 50 50 friedman

mse 0.1 absolute
error 10

MACCS friedman
mse 200 50 50 squared

error 0.05 absolute
error 3

Atom Pairs
Count

friedman
mse 100 50 50 squared

error 0.05 absolute
error 6

CDK friedman
mse 200 50 100 friedman

mse 0.05 absolute
error 3

Atom Pairs poisson 100 50 200 friedman
mse 0.05 absolute

error 10

CDK
Extended

friedman
mse 50 50 50 squared

error 0.05 absolute
error 3

EState friedman
mse 50 50 200 friedman

mse 0.05 absolute
error 3

Descriptors squared
error 200 50 50 friedman

mse 0.05 absolute
error 3
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4.4 Evaluation

After performing data augmentation and hyperparameter tuning, one can assess per-

formance of the selected models on the test set. This section holds the information

of the performance results of all models covered in this thesis.

4.4.1 Evaluating models trained on original data

After hyperparameter tuning, models are trained on train and validation set of original

data to capture all available information. Following figures show results of evaluating

models on each test set corresponding to 5 target values.

Figure 4-2: 𝑅2 scores of models, trained on original data, for Maximum absorption
wavelength
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Figure 4-3: MAE scores of models, trained on original data, for Maximum absorption
wavelength
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Figure 4-4: True and predicted (aggregated) with models, trained on original data,
values of Maximum absorption wavelength

Figures 4-2 and 4-3 show 𝑅2 and MAE scores of selected models for Maximum

absorption wavelength. All models then are aggregated with weights corresponding

to their validation results, and Figure 4-4 displays plot of true against aggregated

predicted values. Aggregated predictions with 𝑀𝐴𝐸 scores from the validation stage

show 𝑅2 = 0.933,𝑀𝐴𝐸 = 18.104, on the other hand, aggregated with 𝑅2 show

𝑅2 = 0.9217,𝑀𝐴𝐸 = 20.015.

As can be seen, all models with Morgan fingerprints as a feature space achieved

the highest results of 𝑅2 ≈ 0.9. Overall, linear models are worse than KNN or DT,

which might lead to the conclusion that this ML task is on non-linearity. The best

𝑀𝐴𝐸 is achieved with KNN model with CDK-Extended fingerprints, 𝑀𝐴𝐸 = 14.53.

The best 𝑅2 is achieved with KNN model with Avalon fingerprints, 𝑅2 = 0.933.
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Figure 4-5: 𝑅2 scores of models, trained on original data, for Maximum emission
wavelength

Figures 4-5 and 4-6 show 𝑅2 and MAE scores of selected models for Maximum

emission wavelength.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-7 displays plot of true against aggregated predicted values. Aggre-

gated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.8756,𝑀𝐴𝐸 =

24.159, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.8556,𝑀𝐴𝐸 = 23.025.

As can be seen, the results are quite similar to results of predicting Maximum

absorption wavelength. With Morgan fingerprints as a feature space models achieved
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Figure 4-6: MAE scores of models, trained on original data, for Maximum emission
wavelength
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Figure 4-7: True and predicted (aggregated) with models, trained on original data,
values of Maximum emission wavelength

𝑅2 > 0.8,𝑀𝐴𝐸 < 30. Avalon fingerprint as a feature and KNN model as a pre-

dictor achieved the best results among all models with 𝑅2 = 0.853,𝑀𝐴𝐸 = 23.21.

Nevertheless, as can be noticed, aggregated results are the leading overall.
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Figure 4-8: 𝑅2 scores of models, trained on original data, for Quantum yield

Figures 4-8 and 4-9 show 𝑅2 and MAE scores of selected models for Quantum

yield.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-10 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.6491,𝑀𝐴𝐸 =

0.146, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.6653,𝑀𝐴𝐸 = 0.141.

As can be seen, the results are worse than above stated two properties. That is

why, ensemble models such as GB and RF are added to predictors. Avalon fingerprint

as a feature space and GB as a predictor achieved the best results among all models

with 𝑅2 = 0.7159,𝑀𝐴𝐸 = 0.12.
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Figure 4-9: MAE scores of models, trained on original data, for Quantum yield
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Figure 4-10: True and predicted (aggregated) with models, trained on original data,
values of Quantum yield
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Figure 4-11: 𝑅2 scores of models, trained on original data, for Extinction coefficient

Figures 4-11 and 4-12 show 𝑅2 and MAE scores of selected models for Extinction

coefficient.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-13 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.8382,𝑀𝐴𝐸 =

0.1505, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.8381,𝑀𝐴𝐸 = 0.1503.

As can be seen, Morgan or Avalon fingerprints as feature space produced best

results among any other descriptors. Overall, Morgan fingerprint as feature space

and KNN model as predictor gave the highest results: 𝑅2 = 0.8743,𝑀𝐴𝐸 = 0.13.
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Figure 4-12: MAE scores of models, trained on original data, for Extinction coefficient
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Figure 4-13: True and predicted (aggregated) with models, trained on original data,
values of Extinction coefficient
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Figure 4-14: 𝑅2 scores of models, trained on original data, for Lifetime (log-
transformed)

Figures 4-14 and 4-15 show 𝑅2 and MAE scores of selected models for Lifetime.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-16 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.6768,𝑀𝐴𝐸 =

0.5231, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.6831,𝑀𝐴𝐸 = 0.5147.

Similar to Quantum Yield, predictions of Lifetime are average. Some linear models

results are not acceptable at all, for example Ridge and Lasso models with descriptors

as feature space produced negative 𝑅2. That is why ensemble models are utilized.
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The best obtained result correspond to GB model with Avalon fingerprints with 𝑅2 =

0.7155,𝑀𝐴𝐸 = 0.46.

Figure 4-15: MAE scores of models, trained on original data, for Lifetime (log-
transformed)
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Figure 4-16: True and predicted (aggregated) with models, trained on original data,
values of Lifetime (log-transformed)
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4.4.2 Evaluating models trained on imputed data with feature

imputation

Original data has missing values, and thus, it is imputed and predictive model is

built with two options. The first option is feature imputation. This option means

that there is no imputed value for target variable, however there are imputed features:

other target values that are used in training, forecasting target property. Following

figures show the results of evaluating models on each test set corresponding to 5 target

values. To be fair at judgements the test and validation sets are kept the same as for

the original data.

Figure 4-17: 𝑅2 scores of models, trained on imputed data (feature imputation), for
Maximum absorption wavelength
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Figure 4-18: MAE scores of models, trained on imputed data (feature imputation),
for Maximum absorption wavelength
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Figures 4-17 and 4-18 show 𝑅2 and MAE scores of selected models for Maximum

absorption wavelength.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-19 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.9605,𝑀𝐴𝐸 =

14.57, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.9564,𝑀𝐴𝐸 = 15.498.

As can be seen all selected models achieved acceptable results on test with 𝑅2 >

0.8. Decision trees with all type of molecular representations achieved the highest

results. The best result correspond to KNN model as predictor and CDK extended

fingerprint with 𝑀𝐴𝐸 = 11.47 in terms of 𝑀𝐴𝐸, and aggregated among all predic-

tions with 𝑀𝐴𝐸 scores with 𝑅2 = 0.9605.

Figure 4-19: True and predicted (aggregated) with models, trained on imputed data
(feature imputation), values of Maximum absorption wavelength
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Figure 4-20: 𝑅2 scores of models, trained on imputed data (feature imputation), for
Maximum emission wavelength

Figures 4-20 and 4-21 show 𝑅2 and MAE scores of selected models for Maximum

emission wavelength.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-22 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.9173,𝑀𝐴𝐸 =

19.25, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.9156,𝑀𝐴𝐸 = 19.485.

Similar Maximum absorption wavelength, adding properties positively affected re-

sults of predictions. All models achieved 𝑅2 ≈ 0.8. The best results correspond to
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aggregated prediction with 𝑀𝐴𝐸 scores with 𝑅2 = 0.9173,𝑀𝐴𝐸 = 19.25.

Figure 4-21: MAE scores of models, trained on imputed data (feature imputation),
for Maximum emission wavelength
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Figure 4-22: True and predicted (aggregated) with models, trained on imputed data
(feature imputation), values of Maximum emission wavelength

95



Figure 4-23: 𝑅2 scores of models, trained on imputed data (feature imputation), for
Quantum yield

Figures 4-23 and 4-24 show 𝑅2 and MAE scores of selected models for Quantum

yield.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-25 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.7341,𝑀𝐴𝐸 =

0.1225, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.7444,𝑀𝐴𝐸 = 0.119.

Similar to above stated target properties, predictions of Quantum Yield are pos-

itively affected by adding other target properties to feature space. The best result
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correspond to GB model with Avalon fingerprints with 𝑅2 = 0.7863,𝑀𝐴𝐸 = 0.1.

Figure 4-24: MAE scores of models, trained on imputed data (feature imputation),
for Quantum yield
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Figure 4-25: True and predicted (aggregated) with models, trained on imputed data
(feature imputation), values of Quantum yield
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Figure 4-26: 𝑅2 scores of models, trained on imputed data (feature imputation), for
Extinction coefficient

Figures 4-26 and 4-27 show 𝑅2 and MAE scores of selected models for Extinction

coefficient.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-28 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.8636,𝑀𝐴𝐸 =

0.1417, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.8624,𝑀𝐴𝐸 = 0.1423.

Although feature imputation positively affected the regression results, not all mod-

els has achieved acceptable results, mostly DT and KNN with any kind of molecular

99



representations is able to achieve 𝑅2 ≈ 0.8. The vest result correspond to KNN model

and Morgan fingerprint with 𝑅2 = 0.8761,𝑀𝐴𝐸 = 0.13.

Figure 4-27: MAE scores of models, trained on imputed data (feature imputation),
for Extinction coefficient
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Figure 4-28: True and predicted (aggregated) with models, trained on imputed data
(feature imputation), values of Extinction coefficient
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Figure 4-29: 𝑅2 scores of models, trained on imputed data (feature imputation), for
Lifetime (log-transformed)

Figures 4-29 and 4-30 show 𝑅2 and MAE scores of selected models for Lifetime.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-31 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.815,𝑀𝐴𝐸 =

0.385, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.812,𝑀𝐴𝐸 = 0.389.

Feature imputation positively affected predictions, however, some linear models

produced non-satisfactory results. Nevertheless, now ensemble methods are able to

achieve 𝑅2 ≈ 0.8,𝑀𝐴𝐸 ≈ 0.35. The best result correspond to GB model with range
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of Descriptors as feature space with 𝑀𝐴𝐸 = 0.33, or Morgan fingerprints as feature

space with 𝑅2 = 0.8508.

Figure 4-30: MAE scores of models, trained on imputed data (feature imputation),
for Lifetime (log-transformed)
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Figure 4-31: True and predicted (aggregated) with models, trained on imputed data
(feature imputation), values of Lifetime (log-transformed)
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4.4.3 Evaluating models trained on imputed data with target

imputation

Another imputation option is target imputation. This means along with using other

properties, one can also enlarge train data with imputed data points.

Figures 4-33 and 4-32 show 𝑅2 and MAE scores of selected models for Maximum

absorption wavelength.

Figure 4-32: MAE scores of models, trained on imputed data (target imputation), for
Maximum absorption wavelength

Target imputation slightly improved results, however, not as effective as feature
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Figure 4-33: 𝑅2 scores of models, trained on imputed data (target imputation), for
Maximum absorption wavelength
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imputation. All models, except for Ridge with range of Descriptors as feature space,

achieved high 𝑅2 and acceptable 𝑀𝐴𝐸 scores.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-34 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.9352,𝑀𝐴𝐸 =

19.334, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.9331,𝑀𝐴𝐸 = 19.986.

The best results correspond to KNN model with CDK extended fingerprints with

𝑀𝐴𝐸 = 13.95, and aggregated with MAE weights of validation stage predictions of

all models with 𝑅2 = 0.9377.

Figure 4-34: True and predicted (aggregated) with models, trained on imputed data
(target imputation), values of Maximum absorption wavelength
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Figures 4-36 and 4-35 show 𝑅2 and MAE scores of selected models for Maximum

emission wavelength.

Similar to Maximum absorption wavelength, predictions of Maximum emission

wavelength with target imputation is somewhat improved, but not as effective as

with feature imputation.

Figure 4-35: MAE scores of models, trained on imputed data (target imputation), for
Maximum emission wavelength

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-37 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.8786,𝑀𝐴𝐸 =
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23.995, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.8763,𝑀𝐴𝐸 = 24.232.

The best results correspond to KNN model with Morgan fingerprints with 𝑀𝐴𝐸 =

22.05, and, surprisingly, Ridge with Morgan fingerprints with 𝑅2 = 0.8872.

Figure 4-36: 𝑅2 scores of models, trained on imputed data (target imputation), for
Maximum emission wavelength
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Figure 4-37: True and predicted (aggregated) with models, trained on imputed data
(target imputation), values of Maximum emission wavelength
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Figures 4-38 and 4-39 show 𝑅2 and MAE scores of selected models for Quantum

yield.

Figure 4-38: 𝑅2 scores of models, trained on imputed data (target imputation), for
Quantum yield

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-40 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.6302,𝑀𝐴𝐸 =

0.1512, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.6723,𝑀𝐴𝐸 = 0.1387.

Similar to other variants of train data, GB are best at predictions of Quantum

Yield. The best result correspond to GB model with a range of Descriptors as feature
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space with 𝑅2 = 0.7524,𝑀𝐴𝐸 = 0.11.

Figure 4-39: MAE scores of models, trained on imputed data (target imputation), for
Quantum yield

112



Figure 4-40: True and predicted (aggregated) with models, trained on imputed data
(target imputation), values of Quantum yield
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Figure 4-41: 𝑅2 scores of models, trained on imputed data (target imputation), for
Extinction coefficient

Figures 4-41 and 4-42 show 𝑅2 and MAE scores of selected models for Extinction

coefficient.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-43 displays plot of true against aggregated predicted values. Ag-

gregated predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.6394,𝑀𝐴𝐸 =

0.2393, on the other hand, aggregated with 𝑅2 show 𝑅2 = 0.6668,𝑀𝐴𝐸 = 0.2312.

Unlike above stated properties, target imputation worsened predicting abilities of

models. This is explained with growth of artificially prepared data, The best result
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correspond to KNN models with CDK extended fingerprints with 𝑀𝐴𝐸 = 0.15 and

Avalon fingerprints with 𝑅2 = 0.7953.

Figure 4-42: MAE scores of models, trained on imputed data (target imputation), for
Extinction coefficient
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Figure 4-43: True and predicted (aggregated) with models, trained on imputed data
(target imputation), values of Extinction coefficient
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Figure 4-44: 𝑅2 scores of models, trained on imputed data (target imputation), for
Lifetime (log-transformed)

Figures 4-44 and 4-45 show 𝑅2 and MAE scores of selected models for Lifetime.

All models then are aggregated with weights corresponding to the validation re-

sults, and Figure 4-46 displays plot of true against aggregated predicted values. Mod-

els that showed negative coefficient of determination are not considered. Aggregated

predictions with 𝑀𝐴𝐸 scores from validation stage show 𝑅2 = 0.4625,𝑀𝐴𝐸 = 0.666,

on the other hand, aggregated with 𝑅2 show poor results.

Similar to Extinction coefficient, predictions of Lifetime worsened with target

imputation due to great amount of artificial data. Now the best results correspond
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to KNN models with EState fingerprints with 𝑅2 = 0.5295,𝑀𝐴𝐸 = 0.6. EState

fingerprints have the lowest size among all other molecular representations used in

this work. Training scores are not provided, however there is an issue with overfitting.

Figure 4-45: MAE scores of models, trained on imputed data (target imputation), for
Lifetime (log-transformed)
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Figure 4-46: True and predicted (aggregated) with models, trained on imputed data
(target imputation), values of Lifetime (log-transformed)

119



120



Chapter 5

Discussion

This section discusses the main points of obtained results in this work, covered in

section 4, along with limitations and suggestions.

Among selected models to predict Maximum absorption wavelength, some showed

the highest scores of 𝑅2,𝑀𝐴𝐸 for each data (original and imputed). Figure 5-1

shows their results by indicating data option (ORIGINAL or any kind of imputation),

selected model, and feature space. It can be observed that CDK-Extended fingerprints

are best among other features to predict this particular property. Moreover, KNN

exhibited the best performance. This could be explained by the fact that KNN

is a non-parametric and instance-based learning algorithm that relies on similarity

measures between data points. In the context of predicting fluorescent properties,

the inherent similarity between fluorescent molecules or compounds likely played a

significant role, or in other words, molecules with similar structures tend to have

similar properties. That is why KNN might be able to identify similar instances in

the dataset.

Another observation is that there is a fair difference between the results of models

trained on different amounts of data. Feature imputation means that in addition

to extracted features like descriptors and fingerprints, also other target properties

are used, and if target properties are not provided, they are imputed. Figure 5-

1 shows that in comparison with the first and the second models that are trained

on original data with the KNN model with CDK-Extended and Avalon fingerprints,
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the third and the fourth models trained on feature imputation data achieved better

results (𝑅2 = 0.9019/0.933 against 𝑅2 = 0.9499/0.9605). Figure 5-2 also supports

this observation, predictions of best-selected models trained on feature imputation are

closely aligned to the ideal line of equivalence. This alignment signifies a profound

level of concordance between predicted outcomes and ground truth values. On the

other hand, there is barely a noticeable difference between models trained on original

and target imputation data. Target imputation implies that train data is enlarged

with imputed data points as well as other target properties.

Figure 5-1: Evaluation scores of the best selected models to predict Maximum ab-
sorption wavelength

Similar to above-mentioned property, predictions of Maximum emission wave-

length are improved by adding other target properties to feature space. According to

Figure 5-3 with feature imputation 𝑀𝐴𝐸 scores dropped to 19.25 and 𝑅2 increased

to 0.9173. Figure 5-4 also shows better concordance between predicted and ground

truth values for the case of feature imputation. Target imputation also improved

the results of models in comparison with the original data, however, it is worse than

122



Figure 5-2: True against predicted values of Maximum absorption wavelength of 3
selected model trained on original and augmented data

feature imputation.

Generally speaking, improvement in predictions of Quantum yield is significant

to the scope of this project, since unlike Maximum absorption wavelength or Max-

imum emission wavelength, one can detect whether a molecule is fluorescent based

on Quantum yield. According to its definition, a Quantum yield of 0 means that the

substance did not emit any light, thus, is not considered as fluorescent. Classification

of molecules, whether they are fluorescent or not, is not one of the research objectives,

however, fluorescence probe design is one of many interests in chemoinformatics.

However, results for Quantum yield are lower than for wavelengths. Figure 5-

5 shows that the results of predictions of Quantum yield are mediocre, since there

is no strong alignment between ground truth and predicted values. Nevertheless,

there is still room for improvement. Figure 5-6 demonstrates that GB model with

Avalon fingerprints and other target properties (imputed, if not provided) has achieved

𝑅2 ≈ 0.79,𝑀𝐴𝐸 ≈ 0.1, which is the best obtained result in the literature.

This achievement shows that model could be built in such a way that it, firstly,

predicts other target properties and those predicted values could be used to predict

Quantum yield. This way does not contradict with ML approach because by their

definition all properties of molecules from experimentation, in this case fluorescent

properties, are experimental descriptors, or molecular representations. Thus, a mul-

tivariate prediction model could be suggested. However, if the model makes errors

in predicting one target variable, it can propagate these errors to the predictions of
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Figure 5-3: Evaluation scores of the best selected models to predict Maximum emis-
sion wavelength

Figure 5-4: True against predicted values of Maximum emission wavelength by 3
selected models trained on original and augmented data
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Figure 5-5: True against predicted values of Quantum yield by 3 selected models
trained on original and augmented data

Figure 5-6: Evaluation scores of the best selected models to predict Quantum yield
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other target variables. This phenomenon is known as error propagation. Errors in

predicting one target variable can affect the model’s parameter estimates, which in

turn can influence the predictions of other target variables. Therefore, it’s crucial

to carefully consider the interdependencies between the targets when designing the

model architecture.

For above mentioned 3 properties, both options of augmented data improved re-

sults of models even slightly. The number of non-missing values for Maximum absorp-

tion wavelength, Maximum emission wavelength and Quantum yield is 20471, 20924,

and 15836, respectively. However, for the remaining properties, Extinction coefficient

and Lifetime, there are only 6703, 7919 provided data points out of 22907 available

combinations of chromophores and solvents. This means that the greatest amount

of data used for training models with target imputation is artificial or imputed data.

This circumstance has significantly worsened the results of the model to predict these

particular properties.

Along with Quantum yield, Lifetime could be also an indicator of whether the

substance has fluorescence or not. According to its definition, a Lifetime of 0 means

that the substance did not spend any time in the excited state and, thus, is not

considered a fluorophore.

As reported by Figure 5-7 with original models achieved at most 𝑅2 ≈ 0.7, while

with feature imputation it is improved to 𝑅2 > 0.8. In addition, Figure 5-8 dis-

plays that predicted values are better aligned with true values. However, similar to

the Extinction coefficient, target imputation significantly dropped evaluation scores.

Similarly, this is due to the fact that most of the target imputed data included data

points with imputed targets.

Figure 5-9 shows that predictions of Extinction coefficient there is a minor dif-

ference between feature imputation and original (𝑅2 = 0.8761 against 𝑅2 = 0.8743),

however, target imputation results are significantly lower than others. Also, Figure 5-

10 displays that there are more outliers in predictions with target imputation.

This observation means that there is an opportunity to improve imputation re-

sults. The imputation process, especially the iterative one, is computationally costly,
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Figure 5-7: Evaluation scores of the best selected models to predict Lifetime

Figure 5-8: True against predicted values of Lifetime by 3 selected models trained on
original and augmented data
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Figure 5-9: Evaluation scores of the best selected models to predict Extinction coef-
ficient

Figure 5-10: True against predicted values of Extinction coefficient by 3 selected
models trained on original and augmented data
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and only some descriptors are used along with target properties, as described be-

fore. Therefore, it is essential to properly define feature space. Along with target

values, it is crucial to extract important features. This work just selected some of

the descriptors, however, a more competent selection is needed. Moreover, for val-

idation purposes multi-ranking is used. There are many approaches to accomplish

rank aggregation, like Spearman’s Footrule [36], and Borda Count Method [37], it is

suggested to dive into this field.

Overall, this thesis has successfully addressed the challenges associated with the

prediction of photophysical characteristics in organic fluorescent materials through

the application of ML techniques. This work leveraged a comprehensive database

and explored various imputation methods while constructing predictive models. The

obtained results show the effectiveness of the proposed methodology and pave the

way for further research in this area. The next step after machine-learning-assisted

prediction is machine-learning enhanced design, i.e. generative models. Thus, the

thesis offers a data-driven approach to address the challenges in fluorescence probe

design.
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Chapter 6

Conclusion

The development of fluorescent materials is crucial for various applications, such as

virtual screening and imaging. However, the traditional methods of predicting fluo-

rescent characteristics rely heavily on quantum mechanical computations and exper-

imentations, which are often time-consuming and resource-intensive. This thesis has

addressed this challenge by exploring the intersection of machine learning and fluo-

rescence probe prediction. Through the utilization of two comprehensive databases

of optical properties of organic compounds collected from various scientific papers,

this research has investigated methods to overcome the limitations posed by missing

data. Along with predictive modeling, imputation techniques have been explored to

handle the inconsistencies in the dataset, thereby enhancing the performance of the

leveraged models.

This thesis has focused on predicting five target fluorescent properties, such as

Maximum absorption wavelength, Maximum emission wavelength, Quantum yield,

Extinction coefficient, and Lifetime. Machine learning models included some com-

mon linear estimators, like Linear Regression, etc., and non-linear ones like, K-Nearest

Neighbours, and tree-based models, along with various imputation techniques. Re-

gression models have achieved 𝑅2 > 0.9 for the first two properties, and 𝑅2 ≈ 0.85

for the last two properties. As for Quantum yield, the GB model with Avalon finger-

prints and other target properties (imputed, if not provided, with sufficient approach)

has shown 𝑅2 ≈ 0.79,𝑀𝐴𝐸 ≈ 0.1, which is considered an outstanding result in the

131



literature. The obtained results not only underscore the potential of machine learning

in fluorescence probe design but also lay a solid foundation for future advancements

in the field, promising more efficient and accurate methodologies for predicting pho-

tophysical properties.

Overall, this research contributes to the advancement of the field by offering a

data-driven methodology to predict the optical properties of fluorescent materials.

The results obtained from the constructed predictive models are expected to demon-

strate the effectiveness of machine learning techniques in predicting photophysical

properties, thus paving the way for future developments in the field of fluorescence

probe design.
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