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ABSTRACT 

Accurate prediction of grades plays an important role in the mining industry: 

differentiation of valuable ore and non-profitable waste material is a key step in mine 

planning. This paper delves into the comparison between sequential Gaussian 

simulation (SGS) and simple kriging methodologies concerning their efficacy in 

grade prediction and the classification of ore and waste materials. The study 

investigates the application of both systems to predict the ore grades within iron 

deposit. It investigates their abilities to accurately predict the spatial distribution of 

ore grades across varied geological formations. Furthermore, this research aims to 

ascertain whether SGS methods exhibit superior performance in classifying 

materials into ore and waste categories compared to traditional simple kriging 

systems. The findings of this study are expected to provide valuable insights into the 

strengths and limitations of SGS and simple kriging methods for grade prediction in 

mining operations. This comparative analysis aims to aid mining engineers and 

professionals in selecting the most effective methodology for optimizing resource 

delineation and decision-making processes in mining projects. 
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1. INTRODUCTION 

1.1 Overview  

Identification of ore body shape, its grade distribution, ore/waste classification and 

evaluation of economic potential is a key part of resource exploration. Grade prediction and 

exploration processes should be done continuously even after the start of extraction. Geochemical 

and geospatial data obtained before and after the exploration process is updated on a regular basis 

to make decisions whether to expand and continue the mining process or to stop it due to the lack 

of economic profitability. Since each further step in mining requires more investments, these 

decisions should be based on more accurate information obtained from resource estimation 

(Sinclair, A. J., & Blackwell, G. H, 2002) 

 During the 80’s of the previous century, many gold mining companies neglected grade 

continuity and mineralization of target location before the production decisions (Clow (1991) cited 

by Sinclair and Blackwell, 2002). Consequently, errors in estimations of grades and tonnages have 

led to early closures of numbers of mines. Thus, more accurate and detailed grade predictions 

require high attention to avoid economic losses. If geologic continuity (physical or geometric 

occurrence of geologic features) is more straightforward for longer distances, value (grade) 

continuity is much shorter than the dimensions of the geologic structure.  

 Nowadays, autocorrelation functions like semivariograms and correlograms are used to 

quantify value continuity in a given domain. They represent increasing average divergence of 

grade as the distance between samples is increased. Relative distances are used to create graphs 

which represent variations in continuity in different directions. Example of a such variogram is 

depicted below:   

 
Figure 1.  Experimental semivariograms (autocorrelation functions) for horizontal and vertical directions 

for Huckleberry porphyry copper deposit, British Columbia (Sinclair and Blackwell, 2002). 
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 Uncertainty in resource estimation is considered to be an unavoidable trait (Hekmatnejad, 

2017). Consequently, from a financial point of view it is crucial to diminish uncertainty as possible 

and obtain most accurate estimations in grade and tonnage calculations. These estimations are 

further used to quantify dilution (waste material which is not separated from ore material and sent 

to processing), mining costs and conditions. Dilution is also an inherent trait of mining operations 

due to the shape of the ore body, geology and scale of operations. Improvements in grade 

prediction can decrease the amount of dilution and directly affect the profitability of mining 

operations. Depending on the methods used in grade prediction, errors and under/overestimations 

may differ. Geostatistical methods like kriging are applied to resource estimation. Implementation 

of cut-off grade helps to differentiate between ore and waste material. Ordinary kriging requires 

special attention to the conditional unbiasedness of the predicted grades. In contrast, non-linear 

(disjunctive) kriging offers unbiased predictions and lowers uncertainty thanks to grade control 

(Hekmatnejad, 2017). 

The purpose of this paper is to compare SGS and SK systems in grade prediction for a 

given case: iron deposit and see how estimated grades differ from original data. Implementing 

these predictions on real case studies and comparison of both is expected to give clear difference 

in two approaches and show accurate way of resource estimation.  

1.2 Problem statement and motivation 

In mining operations, accurate estimation of ore grades and effective classification of 

materials as ore or waste are fundamental challenges. Traditional linear kriging systems have been 

widely used for grade prediction and material classification, but their limitations in handling non-

linear relationships and complex geological settings have prompted exploration into non-linear 

kriging methods. Accuracy and efficiency of different grade prediction systems and ore/waste 

classification is crucial in mining. This study aims to investigate and compare the performance of 

SGS and SK systems. 

1.3 Objectives 

The main objectives of this paper are: 

● To evaluate the effectiveness of SGS and SK in predicting ore grades and classifying 

materials as ore or waste. 

● To identify the strengths and limitations of both approaches and determine their 

suitability for different mining scenarios (if any). 

Specific objective of this paper is to compare the accuracy and efficiency of SGS and SK in 

ore/waste classification based on grade estimations. 
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1.4 Importance  

This paper's significance lies in its exploration of advanced kriging methodologies for grade 

prediction and material classification in mining contexts. By comparing the efficiency of both SGS 

and SK systems, this research seeks to offer valuable insights into selecting a better approach for 

accurate ore prediction and waste management in mining operations. The outcomes of this 

comparative analysis will aid mining professionals in making further feasibility decisions, 

optimizing resource handling, and improving the overall efficiency of mining processes. 

2. LITERATURE REVIEW  

2.1 Resource estimation (depending on grade and volume) 

Since around 1945, statistical methods and terminology have been crucial in the 

characterization of ore (Sichel, 1952; Swanson, 1945, cited by Sinclair and Blackwell, 2002). 

These techniques have been widely used to evaluate quantitative numerical variables such as 

deposit characteristics or metal grades. These applications are mainly concerned with average 

values, variability or spread of values, probability distribution shapes (represented by 

histograms), autocorrelation, basic correlation analysis, relationships between variables, and 

various probabilistic statements related to these topics. These conventional statistical techniques 

are essential for understanding and summarizing mining data, especially when it comes to 

processes for estimating mineral inventories.  

 

Sampling 

Statisticians define a population as the complete set of characteristics under investigation, 

such as a mineral deposit. This population is described by variables (such as grades) which have 

certain measures (like mean and standard deviation) and a distinct pattern or distribution of all 

potential values (data items) around the mean, known as the probability density function or 

histogram. This describes the overall universe or deposit being analyzed. Deriving the 

parameters (characteristics) of the universe (deposit) from a sample of potential items is a 

common goal of statistical research (rock sample assays). There are two different interpretations 

of the word "sample". In the context of statistics, the sum of n individual values creates a sample 

(made up of n items) that represents the deposit. But when it comes to mining, a sample usually 

means a physical piece of rock material from which a representative subset is examined in order 

to calculate quantitative measures of its quality, like grades (Sinclair and Blackwell, 2002). 

Instead of being dispersed randomly across space, samples used in mining evaluations are 

frequently arranged in a variety of patterns, from somewhat regular to highly irregular two- or 

three-dimensional spatial data arrays. Although the volume or mass of rock in any given sample 

may vary, most databases strive for uniformity in support, or sample size and shape.  
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Weighting 

The arithmetic average (m), which is calculated by adding up all n values and dividing 

the result by n, is the most widely used metric to measure central tendency, or the preferential 

clustering of values within a data set: 

𝑚 =
𝛴𝑥𝑖

𝑛
  (1) 

Where: m=mean value, ∑x_i=sum of all n values, n=number of values; 

 

However, in mineral resource estimation, a limited number of samples with different size 

and characteristics does not allow to use conventional mean calculations, thus weighted mean 

value must be considered (Sinclair and Blackwell, 2002). For example, imagine having two 

samples with copper grades 2.5% and 1.0%. Mean value of these samples would be:  

𝑚 =
2.5 + 1.0

2
= 1.75% 

 

However, if the length of first sample is set to be 3 m and the second sample has length of 1 m, 

weighted mean would be: 

𝑚𝑤 = 𝛴𝑤𝑖 ∗ 𝑥 = 2.5 ∗ 3/4 + 1.0 ∗ 1/4 = 2.125% (2) 

 

And if consideration of densities (2.7 and 3.3 g/ml) are applied, weighted mean would be:  

  𝑚𝑤 = 𝛴𝑤𝑖 ∗ 𝑥𝑖 =
2.5∗3∗2.7+1.0∗1∗3.3

2.7∗3+1∗3.3
= 2.066% 

 

These considerations and calculations make weighted mean unbiased, thus more reliable data is 

obtained. To avoid biases of laboratories in the mining industry, usually two or more laboratories 

are used and duplicates of the same samples are sent to them to examine results. Then in resource 

estimation either paired or correlated data is used to reduce bias.     

 

Median and mode 

The value corresponding to the middle data item in an ordered data set (ordered from 

high to low values, or vice versa) is known as the median. This is another crucial indicator of 

central tendency, especially for non-symmetrically distributed data. It means that 50% of the 

values are higher than the median and 50% of the values are lower. The median is a more 

reliable estimator of central tendency than the mean for small numbers of items.  

 

Modes are local peaks on a histogram; they are narrow class intervals of data that are 

more abundant than the data in both adjacent class intervals. The three measures of central 

tendency are generally distinct from one another, even though a mode can correspond to either 

the mean or the median values; in the case of a normal distribution, mode, median, and mean are 

equivalent. In addition, modes play a crucial role in indicating the potential existence of complex 

distributions comprising two or more subpopulations (referred to Sinclair, 1976, 1991). They are 
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also essential for comprehending and identifying outliers, particularly those with unusually high 

values 

. 

Figure 2. An example of a hypothetical data set's histogram showing how the means, medians, 

and modes can vary within a single data set. Each bar lists the numbers of data for each class. 

(Sinclair and Blackwell, 2002) 

Dispersion 

A measure of the divergence of data values is called dispersion. The range of data, or the 

difference between a data set's minimum and maximum values, is a straight-forward, although 

typically impractical, way to characterize dispersion. Due to its extreme sensitivity to the 

existence of a single extreme value, the range is typically inappropriate for characterizing 

dispersion. The variance, or s2, is a data set's most basic measure of dispersion. 

 

𝑠2 =
𝛴(𝑥𝑖−𝑚)2

(𝑛−1)
   (3) 

 

where “𝑥𝑖” is any data value, “m” is the mean of the data, and “n” is the number of data items. 

Degrees of freedom, or (n − 1), have their roots in statistical theory and are related to the 

sampling distribution of s2 (variance of a sample) as opposed to σ2 (variance of a population). 

When a small sample (n < 30) is used to characterize an entire population, the divisor (n − 1) is 

used to ensure that s2 is not biased. A variance is a "squared" number, meaning that when 

calculating it, there is no distinction between positive and negative differences. Since it is in the 

same units as the variable under consideration rather than variance, the square root of the 

variance, also known as the standard deviation, is the widely used practical measure of 

dispersion (Sinclair and Blackwell, 2002). 

  

Covariance 

The formula for covariance 𝑆𝑥𝑦 provides a quantitative measure of the systematic 

variations of two variables (x and y): 

𝑆𝑥𝑦 = 𝛴[(𝑥𝑖 − 𝑚𝑥)(𝑦𝑖 − 𝑚𝑦)]/𝑛    (4) 
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where: 𝑚𝑥 and 𝑚𝑦 are the means of the two variables being compared.  

 

The covariance is positive when high values of x are linked to high values of y and low values of 

x are linked to low values of y; a negative covariance is produced when low values of x are 

linked to high values of y, or vice versa. The covariance is zero when x and y are statistically 

independent, but this isn't always the case—two variables can be dependent on one another even 

though their covariance is zero (Sinclair and Blackwell, 2002). 

 

Cut-off grade 

The ore grade stands as a crucial factor in mining operations, significantly influencing the 

categorization of material into ore and waste sections. Typically, the kriging estimator is widely 

used to predict ore block grades. In conventional mining, if a parcel's estimated grade exceeds 

the cut-off grade, it's termed as ore; otherwise, it's marked as waste. However, an alternate 

method involves simultaneous consideration of parcel grades and the economic implications of 

their destination using simulation-based techniques. This study applies kriging, simulation-based 

methods, and profit/loss functions to a real-world case study for ore/waste classification based on 

initial exploration data. The results are then compared against actual blast hole sample data to 

validate these methods' effectiveness. The findings suggest that simulation-based methods 

exhibit superior performance and better alignment with real data, offering increased adaptability. 

(Mousavi, 2016) 

2.1.1 Kriging 

Kriging is a general term used to describe a variety of estimation techniques (block or 

punctual) that rely on minimizing estimation error, usually through the use of least-squares 

analysis. The phrase was created in honor of D. Krige by G. Matheron and P. Carlier. Matheron's 

geostatistical theory was derived from Krige's empirical work on reserve estimation in South 

African gold mines (Cressie 1990). Kriging is a globally unbiased (i.e., unbiased, on average, over 

the entire data range) estimation procedure, however there may be a considerable conditional bias 

in the kriging results. 

 

The general term "kriging" refers to a number of specific techniques, such as probability 

kriging (PK), simple kriging (SK), ordinary kriging (OK), indicator kriging (IK), universal 

kriging (UK), and multiple indicator kriging (MIK). They are all predicated on the same general 

ideas: that a mathematical function that can be deduced from the realization (data) of a 

regionalized variable can model the autocorrelation of that variable and be used to aid in 

estimation (Sinclair and Blackwell, 2002). 

As illustrated schematically in Fig. 10.1, the general problem to be solved by kriging is to 

provide the best estimate of an unknown point or block from a discrete data set (samples). There 

are eight data available in this example to estimate Block A, and it is implicitly assumed that 

using data from both inside and outside of Block A will enhance the estimation. 
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Figure 3. The general two-dimensional block estimation problem is to estimate the mean grade of 

a block by utilizing a subset of nearby and included data (Sinclair and Blackwell, 2002). 

 

To provide the best estimate of Block A, it is conceivable that the eight data points could 

be weighted in a manner: 

𝑔𝑟𝑎𝑑𝑒𝐴 = 𝑤1𝑠1 + 𝑤2𝑠2 + 𝑤3𝑠3 + 𝑤4𝑠4 + 𝑤5𝑠5 + 𝑤6𝑠6 + 𝑤7𝑠7 + 𝑤8𝑠8   (5) 

 

If the variable is random, meaning all weights are equal, then simple data averaging is 

acceptable; however, if the variable is regionalized, meaning there is significant autocorrelation 

over distances greater than the sample to block spacings, then simple data averaging is not 

optimal. It is obvious that a nearby datum should be given more weight than a more distant 

datum when autocorrelation is significant, though it is unclear by how much. 

 

2.1.1 Ordinary kriging 

Linear kriging is a method used to forecast a regionalized parameter's value at any given 

point by employing a weighted average of known values of this parameter from nearby locations. 

In practical applications, this parameter is often viewed as a manifestation of a second-order 

stationary random field, characterized by a consistent mean and a recognized spatial correlation 

structure, typically modeled via an auto-covariance function or variogram. In the context of this, 

simple kriging (SK) operates under the assumption that the mean value is fixed, whereas ordinary 

kriging (OK) treats this mean value as an unknown, offering greater adaptability when the 

regionalized parameter maintains a locally constant mean but varies globally across space 

(Hekmatnejad, 2017). 

 

Estimation variance of the ordinary kriging method is given by the following equation: 
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𝜎2
𝑒 = 𝐸{[𝑍 − 𝑍∗

𝑘]
2}    (6) 

Where: Z is the true value, 𝑍∗
𝑘 is the kriging estimator. 

 

This expression can be given in the form of the semivariogram as well:  

𝜎2
𝑒 = 2[𝛴𝑤𝑖𝛾(𝐵, 𝑠𝑖)] − 𝛴𝛴𝑤𝑖𝑤𝑗𝛾(𝑠𝑖, 𝑠𝑗) − 2 Ῡ(𝐵, 𝐵)   (7) 

where  𝑤𝑖𝛾 (B, 𝑠𝑖) is the weighted average semivariogram value between all data points and the 

block to be estimated, 𝑤𝑖𝑤𝑗𝛾(𝑠𝑖, 𝑠𝑗) is the weighted average semivariogram value between all 

possible pairs of data, and Ῡ(B, B) is the average semivariogram value of all possible pairs of 

points within the block to be estimated. 

 

With the restriction that the weights must add up to one (𝑤𝑖= 1), equation 7 can be 

minimized. A new unknown, the Lagrange parameter, µ, is introduced into the system of 

equations by this constraint, which is introduced as an expression equivalent to zero in the 

minimizing procedure (referred to Isaaks and Srivastava (1989) by Sinclair and Blackwell, 

2002). The final formulas that result from this process are referred to as the ordinary kriging 

system. 

[
 
 
 
 
𝛾(𝑠1, 𝑠1) 𝛾(𝑠1, 𝑠2) …
𝛾(𝑠2, 𝑠1) 𝛾(𝑠2, 𝑠2) …
𝛾(𝑠3, 𝑠1) 𝛾(𝑠3, 𝑠2) …

   

𝛾(𝑠1, 𝑠𝑛)
𝛾(𝑠2, 𝑠𝑛)
𝛾(𝑠3, 𝑠𝑛)

    
1
1
1

𝛾(𝑠𝑛, 𝑠1) 𝛾(𝑠𝑛, 𝑠2) …   𝛾(𝑠𝑛, 𝑠𝑛) 1

1                      1                     1          0 ]
 
 
 
 

[
 
 
 
 
𝑤1

𝑤2

𝑤3

𝑤𝑛

𝜇 ]
 
 
 
 

=

[
 
 
 
 
𝛾(𝑠1, 𝐵)
𝛾(𝑠2, 𝐵)
𝛾(𝑠3, 𝐵)
𝛾(𝑠𝑛, 𝐵)

1 ]
 
 
 
 

   (8) 

Where: 𝑤𝑖  is the sample weight that needs to be calculated, 𝛾 (𝑠𝑖, 𝐵) is the gamma value 

between a datum and the block that needs to be estimated and 𝛾 (𝑠𝑖, 𝑠𝑗) is the gamma 

value between any two data (Sinclair and Blackwell, 2002). 

 
Figure 4. The Block A from Figure 3 and illustration of how the values are obtained for 

calculations in Equation 8 (Sinclair and Blackwell, 2002).  
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As a result, solution of these equations gives weights, so block/point grade estimate is derived 

from the equation below:  

𝑍∗
𝑘 = 𝛴𝑤𝑖𝑠𝑖      (9) 

 

The corresponding kriging variance is given by:  

 

𝜎2
𝑘 = 𝛴𝑤𝑖𝛾(𝑠𝑖 , 𝐵) + 𝜇 −  Ῡ(𝐵, 𝐵)   (10) 

 

A set of kriging equations is usually impractical to implement by hand. Thankfully, a variety of 

software packages for a broad range of geostatistical computations, including different kriging 

techniques. 

2.1.2 Simple kriging 

According to Wackernagel (2003), the estimation of simple kriging is based on the following 

equations:   

𝛾(ℎ) =
1

2𝑛
∑ (𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ))

2𝑛
𝑖=1  (11) 

𝑍̂(𝑥0) = ∑ 𝜆𝑖
𝑛
𝑖=1 𝑍(𝑥𝑖) + [1 − ∑ 𝜆𝑖

𝑛
𝑖=1 ]𝜇 (12) 

Where: stationary mean (constant all over the domain) = 𝜇. Due to the constant value of stationar 

mean, SK is sometimes referred to as “kriging with known mean” (Wackernagel, 2003).  Greater 

value of 1 − ∑ 𝜆_𝑖𝑛
𝑖=1  indicates a poorly sampled region.  According to Wackernagel (2003) and 

Webster and Oliver (2001), SK assumes second-order stationary, which is constant mean, 

variance, and covariance over the domain or region of interest. Ordinary kriging, which does not 

have a prior mean, is most frequently applied because such an assumption is often overly 

restrictive (Burrough and McDonnell 1998). It is an unbiased kriging algorithm that uses the 

mean of original samples to predict variables.  

2.1.3 Sequential Gaussian simulation  

The SGS algorithm uses simulated values as conditioning data after simulating nodes one after 

the other sequentially. The data are converted into Gaussian space since the SGS method 

requires the use of standard Gaussian values. Calculations and modeling are done on altered data 

variograms. To assess the nodes of the grid, a random path and a simulated grid must be defined. 

In each node, a Gaussian probability distribution is found based on the kriging mean and 

variance. It is required to select a random path in order to estimate at each node. In each node, a 

random value selected at random from a Gaussian probability distribution is referred to as the 

"simulated value" (Asghari and Amnieh, 2014).   
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2.2 Mine planning 

Mining involves the extraction of naturally occurring substances from the earth with the 

aim of generating financial gain. Final target of any mining activity is generation of as much 

profit as possible with lowest initial investments. Extraction is done in different ways depending 

on several considerations: economic, geospatial, political, etc. The process of projecting 

prospective mine sites is called “Mine planning”. This stage is crucial, since once ore extraction 

starts, it is hard to change the mining system on-site. Depending on the nature of minerals, 

extracted materials can be classified into: metallic ores (ex. Iron, copper), nonmetallic minerals 

(ex. sand, gravel) and fossil fuels (coal) (Newman, 2010). Although volume calculations are 

important in all of them, grade prediction and ore/waste classification is crucial for metallic ore 

extractions. Moreover, metallic ore extraction has further division into underground and surface 

mining systems which imply different approaches in mine planning due to the wide range of 

techniques used in different systems. According to Newman (2010), mining has 5 stages: 

prospecting, exploration, development, exploitation and reclamation. Grade prediction can be 

considered as an attribute of the exploration stage, however mining companies imply it also in 

the exploitation stage to improve accuracy and preciseness of previous results.    

2.2.1 Ore/waste classification  

During the exploration phase, geologists assess the deposit's worth by drilling holes to 

gauge the mineral concentration and its distribution across the ore deposit. Methods like kriging 

(Krige 1951) and simulation techniques (Deutsch 2004) are employed for interpolation. These 

techniques generate tonnage-grade curves that illustrate the potential advantages of mining the 

ore deposit based on specific economic parameters. According to the economic parameters and 

processing plant characteristics “cut-off” grade is set to differentiate between valuable “ore” 

material and waste material which does not carry any economic value or does not contain 

metalliferous content. This step should be done prior to investments, design and planning of a 

mine site (Mousavi, 2016).      

 

Because exploration drilling is expensive, there are limited drill holes spaced far apart. 

Furthermore, due to the intricate and fluctuating characteristics of mineral deposits, there's 

inherent uncertainty in estimated grades. Addressing this uncertainty is crucial to avoid 

underestimation or overestimation. Suddenly sending an ore parcel to a waste area results in 

significant financial loss. On the other hand, processing a waste parcel lowers process efficiency, 

reducing recovery rates and consuming substantial energy resources, thus leading to financial 

loss. That is why utilizing the most effective method for distinguishing between ore and waste 

materials can improve planning and reduce the risks linked with mining activities. In this paper, 

it is associated with reducing uncertainty in the kriging process and creation of a proper three 

dimensional shape of orebody to proper understanding of mine site. 
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3. METHODOLOGY  
Initial dataset consists of 2230 iron ore grade values in a given area. To conduct kriging 

and simulation proper EDA and variogram analysis was done. Moreover, to properly compare 

the two methods of estimation, for both systems point and block estimation were to be applied: 

point simulation gives statistical analysis and block simulation gives grade-tonnage analysis. All 

of the work was done in ISATIS.neo software.    

3.1 EDA  

Histogram in Figure 5 depicts original raw data consisting of 2230 samples.  

 
Figure 5. Histogram of original raw data 

Since original data was good, no capping was applied for simple kriging, however for Gaussian 

simulation, this dataset was changed to Gaussian variables. 
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Figure 6. Gaussian variable of original dataset 

3.2 Variogram analysis 

Statistical parameters of the dataset can be seen in variogram analysis, thus two datasets 

were sent to variogram analysis. For both cases, it was decided to use multidirectional 

calculation mode (more reliable). By adjusting lag value and maximum distance, the most 

suitable two scenarios were chosen for further analysis. Suitability of the variogram is seen from 

alignment of points over the lines in the following figures:  
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Figure 7. Variogram for Gaussian simulation (multidirectional) 

Following formula describes variogram of Gaussian simulation: 

 

𝛾(ℎ) = 9.04 𝑛𝑢𝑔𝑔𝑒𝑡 + 18.54 𝑐𝑢𝑏(155.315 𝑚, 33.756 𝑚, 86.855 𝑚)

+ 3.43 exp(1006.13 𝑚, 187.001 𝑚, 1006.13 𝑚)

+ 13.38 exp (916.165 𝑚, 849.144 𝑚, 1006.13 𝑚) 

 

According to the formula above, total sill for SGS is 44.39 and nugget is 9.04. 
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Figure 8. Variogram for SK (multidirectional) 

Following formula describes variogram of Simple Kriging: 

 

𝛾(ℎ) = 9.65 𝑛𝑢𝑔𝑔𝑒𝑡 + 13.02 𝑐𝑢𝑏(163.167 𝑚, 76.285 𝑚, 999.481 𝑚)

+ 6.63 sph(999.481 𝑚, 753.096 𝑚, 409.37 𝑚)

+ 11.19 exp (384.249 𝑚, 265.19 𝑚, 417.929 𝑚) 

 

According to the formula above, total sill for SK is 40.49 and nugget is 9.65. 

 

3.3 Kriging 

 Before any estimation it is necessary to create a grid over the area which is to be 

estimated. Thus, from the original dataset distribution grid with dimensions of 2145x1095x105 

meters and one block dimensions of 15x15x15 were created. 
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Figure 9. Distribution of initial borehole data in 2D (top view) 

 

Then using a geostatistical set obtained from variogram analysis was used to conduct simple 

kriging with two calculation modes: point and block.    

3.4 Sequential Gaussian simulation 

Same grid from 3.3 Kriging was used in sequential Gaussian simulation to create 100 

realizations. In this case also point and block kriging were calculated, discretization steps 

number for block kriging was set to 2.   
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Figure 10. Point and block kriging difference (ISATIS.NEO) 

As it can be seen from Figure 11, point kriging sets values to the center of the cell while block 

kriging divides the cell to the discretization number and sets different values for each division.  

4. RESULTS  
 

In the end, as a result of simulation 100 realizations were obtained for SGS and 1 

estimation result for SK. The Q-Q plots below demonstrate the 3 realizations from SGS and 

result of SK in relation to the original dataset. As Figure 11 illustrates, simple kriging gives more 

deviated results from the original dataset than the SGS (can be seen from the Figures 12-14). 3 

random realizations from SGS in figures 12 to 14 demonstrate higher coincidence with the 

original dataset. In a Q-Q plot, the quantiles of the sample data are plotted against the quantiles 

of the theoretical distribution. If the points fall approximately along a straight line, it suggests 

that the sample data comes from the specified distribution. Any deviations from the straight line 

indicate departures from the specified distribution. 
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Figure 11. Q-Q plot for SK and Original data 

   
Figure 8. Q-Q plot for SGS realization No. 35 
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Figure 9. Q-Q plot for SGS realization No.80 

 
Figure 10. Q-Q plot for SGS realization No.1 
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Figure 11. SK E-type map: distribution of iron grade 

 

 

Figure 12. SGS E-type map: distribution of iron grade 
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The SGS map shows more heterogeneity and detail due to the nature of the simulation, 

while the SK map appears smoother and less variable due to the influence of the mean of the data. 

The choice between SGS and SK would depend on the specific objectives of the study, such as 

whether detailed local variability or a smoothed global estimate is desired. 

 

Figure 13. Variance map of Sequential Gaussian Simulation result. 
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Figure 14. Variance map of Simple Kriging result. 

The SGS variance map shows a greater degree of localized uncertainty, which might be 

due to the simulation capturing more detailed variations in the data. In contrast, the SK variance 

map indicates a smoother, more homogeneous distribution of uncertainty, which may reflect the 

influence of the global mean used in the kriging process and potentially less sensitivity to local 

variations compared to SGS.   

 

Source/method Mean Variance 

Original dataset 37.71 44.39 

Simple Kriging  35.7 17.62 

Sequential Gaussian 

simulation 

36.44 44.29 

Table 1. Mean and Variance values for 3 cases: original, SK and SGS. 

 Table 1 compares mean and variance values for 3 cases: original, SK and SGS. Values 

for SGS were obtained by combining all of the 100 realizations and getting mean from them. As 

it can be seen from Figure 16, SGS estimates higher grades of iron all over the deposit, thus 

metal quantity and benefit according to SGS might be higher.  
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Figure 15. Grade/tonnage graph. 

 

 
Figure 16. Tonnage over cutoff value graph for SGS and SK. 
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Figure 17. Metal quantity/tonnage value graph. 

 

 

Figure 18. Benefit/cutoff grade graph. 
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From the tonnage/cutoff grade graph one can conclude that lower cutoff value at SK might have 

higher tonnage while SGS demonstrates higher tonnage at higher cutoff values in comparison to 

SK. The differences between SGS and SK are subtle in these graphs. SGS seems to predict a 

slightly higher tonnage and grade, which might suggest it is identifying more pockets of higher-

grade material compared to SK. However, when it comes to the economic benefit and metal 

quantity, the two methods provide similar estimations, as indicated by the overlapping lines in 

the corresponding graphs with slightly higher benefit coming from SGS block simulation. Since 

no economic constraints were implemented in simulations, these values are given approximately 

by ISATIS.NEO software itself. These results would inform a mining operation on how to 

balance the cutoff grade for maximizing profit while considering the amount of metal that can be 

extracted. 

5. DISCUSSION  
Comparative performance of Sequential Gaussian Simulation and Simple Kriging in 

estimating iron deposit provided insights into correlation of estimated values and original data, as 

well as possible outcome from estimated reserves. The utilization of SGS and SK techniques in 

geostatistical estimation is of paramount importance in accurately characterizing mineral 

deposits, such as iron, which often exhibit spatial variability. Both methods aim to interpolate 

values at unsampled locations based on the available data, but they differ in their underlying 

assumptions and methodologies. 

 

Analysis reveals that the Q-Q plots generated from the Sequential Gaussian Simulation 

exhibit a higher correlation with the original data compared to those derived from Simple 

Kriging. This observation suggests that SGS may offer advantages in capturing the complex 

spatial patterns and variability present in iron deposits. 

 

One possible explanation for the superior performance of SGS lies in its ability to 

account for spatial trends and non-stationarity more effectively through the simulation of 

multiple realizations. By honoring the spatial continuity and geological features observed in the 

data, SGS produces simulated values that closely resemble the distributional characteristics of 

the original dataset. 

 

In contrast, Simple Kriging relies on a stationary variogram model and assumes constant 

spatial relationships across the entire study area. While SK is computationally efficient and 

straightforward to implement, its rigid assumptions may lead to oversimplified representations of 

the underlying geological structures, particularly in cases of complex spatial patterns or non-

linear trends. 
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Mean value maps of two estimation systems show different distribution of grades. E-map 

of SK shows  

 

6. CONCLUSION AND RECOMMENDATIONS 
In conclusion, the comparative analysis of Sequential Gaussian Simulation and Simple 

Kriging in estimating a given iron deposit underscores the importance of selecting appropriate 

geostatistical methods tailored to the specific characteristics of the deposit and research 

objectives. While both techniques have their merits, the results from Q-Q plots suggest that SGS 

holds promise in providing more accurate and reliable estimations for a given iron 

mineralization. 

 

Grade control and its proper estimation is an essential part of mining which would affect 

feasibility analysis of the mine site. Overestimation would lead to potential profit loss or even 

would not generate any profit at all, while underestimation would even not indicate profit at 

feasibility analysis stage and potential mine site would not even open. Since the final objective of 

every mining project is to get as much profit as possible, high attention is needed to resource 

estimation. There are some early closure examples of mine sites due to poor resource estimation. 

 

Using a case study in the assessment of mineral resources, this paper compares the 

effectiveness of SGS and SK. It is essential to acknowledge the limitations and potential biases 

associated with both SGS and SK techniques. The choice between these methods should be 

guided by factors such as the spatial characteristics of the deposit, the level of uncertainty 

tolerance, and computational resources available. Additionally, further research and sensitivity 

analysis may be warranted to validate the findings and explore alternative geostatistical 

approaches.     
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