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ABSTRACT 

A range of methods is available to assess a reservoir performance. Development and 

application of fast methods to evaluate the performance of a recovery method and provide a 

general picture of injectors/producers connectivity is critical to manage a reservoir. Capacitance 

Resistance Model (CRM) is a useful tool for improving real-time flood management, as it 

allows rapid modeling and simulation of gas and water flood recovery processes. The CRM 

approach is based on signal processing methods in which injection rates are accepted as input 

signals and production flow rates are considered as reservoir response or output signals. The 

model offers key advantages, including simplicity, immediate results, and optimal performance 

even with minimal initial data. Over recent years, enhancements in CRM have established it as 

a reservoir management tool, enabling essential tasks like history matching of production data, 

forecasting production rates, scheduling injection rates, detecting injection leakage, and 

estimating fracture distribution (Sayarpour, 2008).   

In this study, we expanded the application of CRM to predict the behavior of hot water 

injection processes. Systems identification is applied for history matching using only 

injection/production data from commercial simulator to characterize the reservoir models 

where injection of hot water was applied, evaluating interwell connectivities and time constants.  

Four case studies were developed with two different injection fluid types. These included a 

homogeneous model with a five-spot well pattern (Case 1), models featuring high-permeability 

streaks (Case 2 and 3), and a heterogeneous reservoir model (Case 4). In these cases, bottomhole 

pressures and production rates remained constant, while injection rates fluctuated over the 

simulation period. The first three cases were analyzed to predict reservoir performance 

analytically under specific conditions for homogeneous scenarios. The highest calculated 

average error was observed during Case 2 for both total liquid production and oil production 

rates (10.84% and 11.79%, respectively), while the minimum average error values were found 

in Case 4, with values of 6.50% for liquid rates and 5.76% for oil production rates. In all cases, 

the results of the developed models exhibited satisfactory agreement with those of a grid-based 

commercial simulator. We considered these hypothetical cases where modifications were 

applied to generate a more reliable evaluation of interwell connectivity and time constants, and 

used the R-squared value of the model as a fitting parameter for history matching processes. 

This approach, applied across multiple cases, yielded excellent evaluations of both reservoir 

performance and well connectivity. 
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1. INTRODUCTION 

The assessment of production conditions at existing oil and gas fields, as well as 

forecasting the level of their future productivity is one of the most important and challenging 

tasks not only for reservoir engineers but also for the entire field of oil and gas production. 

Along with this, there are several other tasks as forecasting the development and exploration of 

new oil and gas reservoirs, considering various features such data availability. 

Currently, there are various methods to assist in these assessment activities, and the most 

effective method is using reservoir simulation tools. In simple words, reservoir simulation can 

be achieved by applying mathematical calculations to predict and forecast reservoir 

performance under different conditions. The process of simulation of the reservoir is not new 

for the petroleum engineering industry. Although the idea of reservoir simulation is very old, 

with the rapid development of computer technology it has become possible to use new aspects 

that describe oil and gas reservoirs using more details, hence more accurate use of reservoir 

simulation is achieved. However, several issues can arise while running reservoir simulations, 

for instance understanding and using more detailed input data affects the accuracy of the 

reservoir simulation.   

The first steps of using reservoir simulation were in the 1960s when calculations 

consisted of large equations, material balances, and one-dimensional (1D) Buckley-Leverett 

approach (Coats, 1982). The field of reservoir modeling has developed by the rapid evolution 

of high-speed digital computers. These models could help to solve large sets of finite difference 

equations that describe two- and three-dimensional (2D and 3D), multi-phase, dynamic flows 

in heterogeneous media (Coats, 1982). In the 1960s, all modeling work was devoted to the 

problems of two-phase systems such as gas-water and three-phase gas-water-oil. The 

simulation models used were limited to reservoir depletion and pressure maintenance only. In 

the 1970s, the picture began to change due to the sharp rise in oil and gas prices, which led to 

the development of various methods of enhanced oil recovery (EOR). This has led to the 

emergence of new simulation systems such as mixed flooding, chemical flooding, CO2 

injection, steam and/or hot water injection, etc. These models help to solve complex oil 

recovery processes, as well as reduce costs by improving the stability of the formations and 

their application efficiency. This has led to the fact that the relatively simple understanding of 

the two-phase (gas and oil) behavior of hydrocarbons in an immiscible flow has been changed 

to the use of the concept as the displacement of oil under the influence of certain conditions 
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such as temperature and chemical agents. In addition, using conventional multiphase flow in 

porous medium simulation could respond to changes such as chemical absorption and 

degradation, reduction in interfacial tension, various reaction kinetics, etc. 

As it was mentioned above, these models can be used considering various features of 

oil and gas production. The purpose of such modeling is to understand the behavior of fluid 

flow in multi-phase systems such as gas-water, and gas-water-black oil in reservoirs, and on 

this basis apply the most efficient methods of oil field exploration that will improve the oil 

recovery performance.  

Many types of reservoir modeling can be classified from using simple reservoir analogs 

to models that are applicable only with an understanding of the physics of all mechanisms of 

oil production. Thus, given the purpose of modeling and the availability of all basic data, it is 

possible to predict which type of reservoir modeling can be applied in certain cases. The 

benefits of using complex types of reservoir simulations, such as the reliability and credibility 

of the outcomes, come along with numerous requirements and limitations, such as using high-

quality input data, which in turn increases the time and using resources, and as a result, requires 

more computational effort. The same limitations and advantages exist in the application of the 

simple models, for example, using less initial data and fewer computational resources can lead 

to the less accurate interpretation of the results, namely their unreliability in real mode. Thus, 

one can come to some conclusion that even if there a several types of reservoir modeling, each 

is applicable with some assumptions regarding specific conditions. 

To estimate the future behavior and production of the reservoir, various methods are 

used, such as numerical simulations, predictive models, etc. These methods help in determining 

the next steps in EOR methods such as water flooding, polymer flooding, CO2 injection, etc. 

They are used after the reservoir reaches its peak economic productivity to increase its 

efficiency namely after primary recovery. When determining which of the methods for 

predicting an increase in reservoir productivity can be applied in different cases, one of the 

important economic parameters is using fewer initial data, as well as a small amount of time 

for the simulation process. Among these methods, which help to determine and predict the 

future of the reservoir, predictive models are the most cost-effective, as they require only a 

small amount of data and a small involvement of computing and engineering time. 
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Crossflow, heterogeneity, injectivity, and areal sweep efficiency are parameters that can 

affect fluid behavior in a reservoir, and using predictive models as a main one in forecasting 

reservoir production can obtain all these parameters.     

Thereby, new reservoir simulation approaches have been developed that allow rapid 

reservoir simulation using less input reliable data to quickly evaluate reservoir performance. 

And one of these models is using CRM. In reservoirs, the fluid flow is caused by a pressure 

difference. Due to the lack of computational equations and resources before, it was impossible 

to model this fluid flow behavior. However, the term reservoir simulation implies using similar 

models behaving like fluid flow in a reservoir; a capacitance resistance model has been 

developed. Several experiments were carried out in this regard, in which the fluid flow was 

simulated by a system with an electron flow. The reason for using this method was that the 

electron flow system has several similarities with the fluid flow system: both of them have some 

resistance to flow, as well as the ability to store the energy, the first, fluid flow due to its 

compressibility, the second, flow of electrons due to the storing them in capacitors (De Holanda 

et al., 2018). This model is based on a quantitative technique, namely the use of a material 

balance in which only the injection and production rates and well coordinates are used to 

determine modeling parameters, such as interwell connection and time values. In this model the 

injection rate is used as an input signal, the production rate as an output signal (Saidi et al., 

2015). The parameter for evaluating the efficiency of this model can be considered the 

proportion of the injected fluid in each of the production wells and the time to process the 

simulation. The advantages of this model are easy to use, short running time, and a small 

amount of initial data.  

As mentioned before, interwell connectivity is one of the main constitute parameters of 

CRM, thus understanding of history matching of injection and production wells connectivity in 

a multiwall system is necessary. CRM are models that are based on using a material balance of 

the system. For this type of modeling the required data only consists of interference between 

wells and injection/production rates to be capable of history matching, and knowing the 

bottomhole pressure (BHP), if it is available. 

As CRMs can be described as fast simulation models, there are some cases when using 

this fast simulation model can be applied: 

 to identify the presence of high permeability zones and sealing faults; 

 quantification of interference between adjacent wells; 

 determination of sweep efficiency; 
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 fluid distribution identification through secondary recovery and EOR processes.  

In this part of the chapter basic concepts of CRM, specifically its physical meaning, 

controlling parameters, history matching as well as application can be introduced in more detail. 

1.1 Problem Definition 

The ultimate objective of reservoir modeling and simulation is to develop a model that 

can accurately forecast reservoir behavior and be applied to quickly arrive at the appropriate 

management approach. Typically, it requires the fusion of various disciplines, which makes it 

a challenging assignment to finish on time. The procedure is made more difficult by the fact 

that petroleum reservoirs are data-poor settings in addition to the porous medium flow 

phenomenon's inherent physical complexity. Since many reservoir characteristics must be 

inferred rather than physically measured, complicated models are usually created that are highly 

unpredictable. In the oil industry, data acquisition can sometimes be highly expensive. So, it is 

crucial to make sure that the data collected significantly contributes to the decision-making 

process improvement. Another issue is that data analysis takes time because information must 

be evaluated and interpreted to be incorporated into a reservoir model, and the industry is 

frequently under pressure to make choices daily with few resources. To address the 

aforementioned issues, simplified reservoir models are developed. Using just the producers' 

BHP and production/injection rates for history matching, the CRM defines a flooded reservoir 

by calculating interwell connectivities, time constants, and productivity indices (PI). This leads 

to quick and affordable reservoir modeling and simulation that can be used for real-time 

optimization. 

The experiment was primarily justified in 1942 when the first capacitor resistor circuit 

was employed to simulate reservoir behavior during floods due to a lack of processing 

capability to handle the complex reservoir modeling problem (De Holanda et al., 2018). The oil 

industry is currently working with a different paradigm, called real-time recovery and 

optimization. Although it is possible to run large reservoir grid-based models and support 

decision-making, optimization approaches frequently involve performing a huge number of 

simulations, which is not always practicable. 

Furthermore, because of the high level of uncertainty surrounding some crucial 

parameters (such as porosity and permeability), managerial decisions based on robust 

mathematical solutions can still be very uncertain, necessitating numerous realizations of the 

geologic model and estimates of the worst and best-case scenarios. Reduced complexity models 
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are the best option in this situation for optimization purposes because they are quicker to 

execute, give a good physical understanding of the reservoir, and typically present an objective 

function with a smoother surface, preventing the optimization algorithm from becoming stuck 

in local minima. CRM has been used as a tool for managing flooding in many different 

industries because of these factors. 

 CRM's central idea is that the reservoir may be conceptualized as a straightforward data-

driven input-output model controlled by differential equations for the linear material balance. 

To regulate the outputs, which are production rates, which are the variables with economic 

value, the inputs—injection rates and BHPs — can be manipulated.  

 This chapter will focus on extending the applicability of the capacitance resistance 

modeling method to thermal recovery processes. Hot water flooding (HWF) in particular is 

considered in this work. The focus on HWF is for two reasons: 

 First of all, an expansion of the CRM method to hot waterfloods is a logical and natural 

step given how straightforward the HWF process is and how similar it is to cold water 

flooding (compared to other processes in the thermal stimulation family). If the CRM 

technology could be successfully applied to hot water flooding, it would provide a solid 

foundation for tackling more complicated thermal stimulation processes like steam 

flooding, SAGD, and in-situ combustion; 

 The second reason is that CRM is a desirable contender for simulating HWF processes 

due to its speed and low computing cost. A thermal CRM could offer a less expensive 

and quicker alternative to or complement numerical thermal simulators since 

characterizing HWF, like many other thermal processes, is frequently costly and time-

consuming. 

1.2 Objectives of the Thesis 

1.2.1 Main Objectives 

With the help of production/injection and BHP variations, the CRMs offer a reduced-

order, input-output modeling approach that describes reservoirs. The models have been 

successfully applied to primary recovery and other EOR processes since they were initially 

designed for water flooding (secondary recovery) activities. This study focused on expanding 

CRM technology to thermal stimulation projects and enhancing CRM capabilities for 

characterization in water-flooded reservoirs. 
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 The 2 key objectives of this research work are as follows: 

 Application of CRM technology to thermal recovery projects. Due to its relative 

speed, lack of reliance on geological data, and applicability to reservoirs with a large number 

of wells, CRM is particularly appealing for the characterization of thermal projects. The 

creation of a CRM variation appropriate for heat operations will be the main topic of this 

research project. For modeling and managing reservoirs undergoing thermal stimulation, a 

model of this kind will offer quick and simple replacements or complements; 

 Effect of HWF on CRM parameters.  

1.3 Outline 

This thesis contains of 5 chapters such as: 

 Chapter 1 is an introduction that describes the relevance of the work and consists of 

problem statement and objectives of the work; 

 Chapter 2 introduces the literature review of CRM and hot water flooding; 

 Chapter 3 is  a methodology which was used to design CRM; 

 Chapter 4 is for results and discussions obtained from CRM for 4 cases based on 

synthetic fields; 

 Chapter 5 is a conclusion and recommendations for future research.  
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2. LITERATURE REVIEW 

To determine the pressure and oil saturation of each grid block in the reservoir various 

conventional reservoir simulators like Eclipse and the IMEX are used to numerically solve the 

differential material balance equations (MBE). However, these quantities (pressure and oil 

saturation) must be updated as the simulation goes on because they change over time in addition 

to varying spatially from one grid block to another. When a huge reservoir needs to be modeled, 

this could be an extremely time-consuming operation because large simulations require millions 

of grid blocks. It takes time and money to gather core samples to determine the rock and fluid 

parameters that reservoir simulators need as input. 

Using just data from the wells, the CRM analyzes the characteristics of an oil reservoir 

(Weber, 2009). Because this model resembles an RC (Resistor-Capacitor) circuit, the term 

CRM was chosen for it (Kim et al., 2012). A capacitor's voltage measurement in a parallel RC 

circuit, where the battery potential is comparable to the injection signal, is akin to a production 

rate reaction to a step change in injection rate (Sayarpour, 2008). The CRM uses multivariate 

nonlinear regression to estimate two different types of model parameters: connectivities (or 

gains), which represent the degree of communication between injector-producer well pairs, and 

time constants, which represent the degree of fluid storage (compressibility) or pressure 

dissipation between well pairs. 

An ICRM was created by Nguyen et al. (2011) that substitutes cumulative water 

injection and cumulative total production for water injection rate and total production rate. To 

get the model estimates, the ICRM (Integrated Capacitance-Resistance Method) uses linear 

multivariate regression (LMR). In comparison to conventional reservoir simulators, the CM 

(Capacitance Model), CRM, and ICRM offer a quick assessment of reservoir behavior between 

injectors and producers because these three models only need producer bottom-hole pressures 

(BHPs), which are frequently already measured and collected, and water injection rates (or 

cumulative water injection) and total liquid production rates (or cumulative total liquid 

production). 

2.1 Capacitance Resistance Models 

Interwell connectivities (or gains) and time constants are two types of model parameters 

that must be estimated. In process control, straightforward linear models with gains and time 

constants are typically employed. The connectivities represent the connection between wells 

and calculate the effects of fluid characteristics as well as reservoir permeability and porosity. 
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The time constant reflects the effects of reservoir compressibility, pore volume, and the PI of a 

producing well and allows for attenuation of the injection signal. 

Multivariate nonlinear regression is used to derive the model's parameters using 

historical data on injection and production rates. Physical reservoir qualities do not need to be 

estimated a priori. However, the model's history matching historical data yields useful 

information about the reservoir. For various reservoir control volumes, the CRM provides a 

variety of alternatives.  

Production and reservoir engineers have used a straightforward but effective approach 

by combining the material balance and inflow equations. This framework makes it easier to 

evaluate the viability of anticipated flow rates and gives material balance computations a 

deadline. Such coupling is also the core of CRMs, as stated in Equations from    1-4 (Sayarpour, 

2008). The following equation is the material balance in a flooded reservoir: 

𝑐𝑡𝑉𝑝

𝑑�̅�

𝑑𝑡
= (𝑡) − 𝑞(𝑡) 

Eq. 1 

where ct is total compressibility, Vp is pore volume, �̅� is volume averaged pressure, w(t) 

is injection rate and q(t) is total production rate (oil and water).The formula for the deliverability 

equation is: 

𝑞(𝑡) = 𝐽(�̅�(𝑡) − 𝑝𝑤𝑓(𝑡)) Eq. 2 

where pw f is the producer’s BHP and J is the productivity index. From both equations 

above �̅� can be found by using 𝑞, 𝑝𝑤𝑓 and 𝐽 and replaced in equation 1 to get the following 

equation for: 

𝜏
𝑑𝑞

𝑑𝑡
+ 𝑞(𝑡) = (𝑡) − 𝜏

𝑑𝑝𝑤𝑓

𝑑𝑡
 

Eq. 3 

where 𝜏 is time constant and the equation to express it: 

𝜏 =
𝑐𝑡𝑉𝑝

𝐽
 

Eq. 4 

Physically, the time constant τ represents the amount of fluid storage (compressibility) 

or pressure dissipation between pairs of injector/producer wells. According to the following 

presumptions, Equation 3 was created by considering some following assumptions: 

 No additional drilled wells in the field during the analysis; 

 Properties of rock (permeability, porosity, etc.) and fluid (compressibility, viscosity, 

density, etc.) are considered to be constant; 

 The temperature of the reservoir is constant or barely varies; 
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 The coexistence of two immiscible phases; 

 The disregard of the effects of capillary pressure and gravity;  

 Application of Darcy's law, and the constancy of the PI. 

Opportunities to improve hydrocarbon recovery and field management can be found by 

analyzing the many scales of the porous media flow phenomenon in reservoirs. The CRM has 

several forms that depend on the reservoir control volumes (Fig.1). 

 

Figure 1. Illustration of CRM based on different reservoir control volume types: (a) single tank (CRMT); (b) 

producer based (CRMP); (c) injector–producer pair based (CRMIP); (d) blocks in series (CRM-block); (e) multi-

layer or blocks in parallel (ML-CRM) (De Holanda et al., 2018). 

2.2 CRMT – The Single Tank  

The drainage volume of the entire reservoir serves as the control volume in the CRMT 

formulation for the governing continuity equations. The reservoir can be represented as a single 

tank with a single injection rate and one production rate by adding the rates of all the production 

wells into a single pseudo-producer and the rates of all the injection wells into a single pseudo-

injector. Figure 3 (a) shows this construction in schematic form. 

A model with three parameters — an interwell connectivity f, a time constant τ, and the 

productivity index J — is produced when the CRM is built as a single tank.  

𝑞(𝑡) = 𝑓𝐼(𝑡) − 𝜏
𝑑𝑞(𝑡)

𝑑𝑡
− 𝐽𝜏

𝑑𝑝𝑤𝑓 (𝑡)

𝑑𝑡
 

Eq. 5 

Equation 5 (Sayarpour, 2008) can satisfy the condition as superposition in time, i.e. that 

it is possible to substitute the value of the previous period’s production with the equation for 

that period to arrive at an equation that is only dependent on the initial production rate and the 
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injection rates for each period. Nonlinear regression is used to determine the connectivity and 

time constant model parameters. To do this, a nonlinear program (NLP) with the following 

objective function must be created: 

min 𝑧 = ∑(∑ 𝑞𝑗𝑘
𝑎𝑏𝑠 − 𝑞𝑘

𝑛𝑝

𝑗=1

)2

𝑛𝑡

𝑘=1

 

Eq. 6 

To quickly and easily describe the behavior of the reservoir as a whole, the CRMT 

(Capacitance-Resistance Model-Tank) is used. There are only two parameters, and by resolving 

the NLP above, the values obtained can be used as starting points for future more complex 

CRMs. While it has been demonstrated that this straightforward reservoir description is 

relatively accurate, typical hydrocarbon reservoirs benefit from a more involved approach 

(Sayarpour, 2008). 

2.3 CRMP – The Producer-Based  

The drainage volume of each producer, including all of the injectors that affect their 

production rates, is defined as producer-based representation (CRMP), as shown in Figure 3 

(b). 

𝑞𝑗(𝑡) = ∑ 𝑓𝑖𝑗𝐼𝑗(𝑡) − 𝜏
𝑑𝑞𝑗(𝑡)

𝑑𝑡

𝑛𝑖

𝑖=1

− 𝐽𝑗𝜏𝑗

𝑑𝑝𝑤𝑓 
(𝑗)

(𝑡)

𝑑𝑡
 

Eq. 7 

The steady-state proportion of water injected in injector I that contributes to the 

production of both oil and water in producer J is physically represented by the gain 𝑓𝑖𝑗. 

Multivariable nonlinear regression is again used to estimate model parameters (the 

connectivity and time constant). The necessary objective function differs somewhat from the 

CRMT's as  

 min 𝑧 = ∑ ∑(𝑞𝑗𝑘
𝑎𝑏𝑠 − 𝑞𝑗𝑘)2

𝑛𝑝

𝑗=1

𝑛𝑡

𝑘=1

 

Eq. 8 

This Equation 8 has its following limitations: 

∑ 𝑓𝑖𝑗

𝑛𝑝

𝑗=1

≤ 1 for all i  

Eq. 9 

𝑓𝑖𝑗 ,  𝜏𝑗 ≥ 0 for all i and j Eq. 10 
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2.4 CRMIP – The Injector-Producer Pair-Based  

The CRMIP’s control volume is represented using one 𝜏𝑖𝑗  and 𝑓𝑖𝑗 for each injector-

producer pair, shown in Figure 3 (c) above. The total fluid production for this control volume's 

governing continuity equation is given by: 

Jij - the PI associated with the partial production qij(t) using the following Equation 12 

(Sayarpour, 2008): 

  𝑞𝑖𝑗 = 𝐽𝑖𝑗(𝑝𝑖𝑗̅̅̅̅ − 𝑝𝑤𝑓
(𝑗)

) Eq. 12 

2.5 CRM-Block 

The first-order tank formulation presupposes an instantaneous reaction to changes in 

injection rates. To implement tanks in a series paradigm, the injector-producer control volume 

was divided into numerous blocks (Fig. 3 (d)). For situations with high dissipation, such as low 

permeability, high-frequency injection signal, and/or far-off injector-producer pairs, the CRM-

block model was developed. 

𝑞(𝑡) = 𝑞𝐵(𝑡0)𝑒
−

(𝑡−𝑡0)
𝜏𝐵 + ∑(𝑞𝐵(𝑡0)𝑒

−
(𝑡−𝑡0)

𝜏𝐵 ∏ 1 −

𝐵−𝑏

𝑎=1

𝐵−1

𝑏=1

𝑒
−

(𝑡−𝑡0)
𝜏𝑎

+ (𝑡) ∏(1 − 𝑒
−

(𝑡−𝑡0)
𝜏𝐵 )

𝐵

𝑏=1

 

Eq. 13 

where B is the total number of blocks between the pseudo-injector and pseudo-producer. 

The model of CPM-Block is not an attractive solution if the simplicity of the reservoir modeling 

is a goal that is pursued. As the number of parameters significantly increases, to diminish this 

issue Sayarpour presented to consider an equal 𝜏𝑏 for all blocks and control the number B in 

history matching. Moreover, because these control volumes are not spatially specified, the 

pressures and rates of the blocks cannot be linked to specific reservoir locations. In other words, 

the primary goal of the CRM-block concept is to simulate the delay in the production response. 

2.6 Multilayer CRM: Blocks in Parallel  

Since it is typical for impermeable layers to be interspersed within the reservoir rock, 

compartmentalizing the fluid flow to the wells is more realistic than assuming a single layer, as 

in the earlier approximations. 

  𝑞𝑖𝑗(𝑡) = 𝑓𝑖𝑗𝐼𝑖(𝑡) − 𝜏𝑖𝑗

𝑑𝑞𝑖𝑗(𝑡)

𝑑𝑡
− 𝐽𝑖𝑗𝜏𝑖𝑗

𝑑𝑝𝑤𝑓 
(𝑗)

(𝑡)

𝑑𝑡
 

Eq. 11 
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The previously described ML-CRMs extended the CRMP material balance Equation 7 

to each layer (α), allowing for the following summation of these models: 

where 𝑞𝑝,𝑗𝛼 is the total production rate contributed from layer α disregarding the 

crossflow (𝑄𝑝,𝑗𝛼 contribution from other layers). Given the cases of cross-flow between layers, 

care must be taken when increasing the complexity of the model (Mamghaderi et al., 2012). As 

the number of parameters increases, there will be more combinations that should match the 

historical data satisfactorily. There is also a risk that many of these models will give poor 

predictions. In addition, while using this model, the change in cross-flow conditions over time 

may not be correctly captured. 

2.7 CRM Parameters Estimation 

The CRM method requires only three types of estimation parameters, two of which were 

mentioned earlier, these are interwell connectivity (fij) and time constant (𝜏𝑖𝑗), also the third 

parameter is the PI (Jij), while the grid-based model, in comparison with even the most complex 

CRM type, requires a several rock and fluid properties to model the behavior of a given 

reservoir, as well as its fluid flow behavior (Holanda, 2015). 

Instead of conducting complete physics models straight away, it is feasible to employ 

CRM simulation based exclusively on production data. In this section of the chapter, the 

parameters that have the most impact on the simulation outcome will be briefly explained as 

well as their physical meaning on the process. Therefore, it is assumed that the quantity of 

parameters required to describe the system is a function of the number of injection and 

production wells, as well as the chosen formulation of CRM (Holanda, 2015).  

2.7.1 Physical Meaning of Parameters 

One of the accepted assumptions to most accurately describe the flow behavior of the 

reservoir is the availability of physical models, for the evaluation of which a large amount of 

data of various properties is used. As it will be further discussed, some of the reasons why the 

reservoir modeling process has become a very expensive process will be mentioned. 

In practice, processes such as data collection and analysis that need to be handled during 

the simulation process are very time-consuming and financially demanding due to the varying 

  𝑞𝑝,𝑗𝛼(𝑡) = ∑ 𝑓𝑖𝛼
′

𝑁𝑖𝑛𝑗

𝑖=1

𝑓𝑖𝑗𝛼𝑤𝑖(𝑡) − 𝜏𝑗𝛼

𝑑𝑞𝑝,𝑗𝛼

𝑑𝑡
− 𝐽𝑗𝛼𝜏𝑗𝛼

𝑑𝑝𝑤𝑓(𝑡)

𝑑𝑡
 

Eq. 14 
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infrastructure and the requirement for specialized knowledge and manpower. In real cases, the 

reservoir is a heterogeneous system with different areas with different permeability and 

porosity; this in turn leads to the use of a large amount of geostatic data. The parameters that 

are used in this type of simulation are very accessible and easy to use and evaluate, which makes 

it much faster and most importantly cheaper to provide a workflow for practical 

implementation. 

2.7.2 Interwell Connectivity 

The volume fraction of injected fluid from a particular injector that flows to a particular 

production well is referred to as interwell connectivity or simply gains (De Holanda et al., 

2018). In general, these gains are related to the steady state response of the outlet signal caused 

by changes in the input signal. The general trend of this parameter is related to the interval of 

variation between injection rates of injection wells. Thus, the more connections, the greater the 

variation in the output signals. This parameter has great practical importance since it helps 

determine, with an increase in the injection rate from a certain injection well, how much to 

expect the increase in the productivity rate of a certain production well.  

2.7.3 Time Constant 

One of the parameters, which has also a significant effect on an output signal, is the 

time, takes for a pressure wave due to the change in the rate of injection, to reach and distribute 

in the porous media. High compressibility, low permeability, as well as large pore volume - all 

of these are significant assumptions for the slow response of the system to the changes, which 

is estimated by the high performance of the 𝜏𝑖𝑗. Also, vice versa, high permeability, small pore 

volume, and small compressibility lead to the fast response signal, and the 𝜏𝑖𝑗 is small. 

2.7.4 Productivity Index 

To obtain the required flow rate of a production well the required pressure drawdown is 

required to be known, this parameter is called the productivity index. The assumptions applied 

for the constant PI are that the properties of the rock and liquid in the reservoir are constant 

over time, due to the total volume of the reservoir as well as its pressure. This is called a steady-

state system. However, if the system is not in a steady state, then Jij is not constant. 

 The CRM assumes that Jij is not constant, while the water injection into the reservoir 

holds its pressure in approximately the same values; the Jij varies in the range of the same 
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values, as the injection rate values and the BHP of producer values are changing (Holanda, 

2015). 

2.8 Application of CRM  

Different researches have been conducted to analyze injector-producer pairs to 

determine reservoir properties, and many methods are used to do this, such as tracer testing 

and/or observing the response of producers to an injection signal. Some researchers used 

statistical methods in combination with injection and production data to determine the interwell 

connection. To determine the interaction between pairs of injectors and producers as a potential 

indicator of flow directionality, a study by Heffer et al. (2007) estimated the Spearman rank 

correlation coefficient between them. Their study showed that some components of the 

injection signal received by producers were related to geomechanics. In some respects, the 

CRM can be thought of as being similar to a streamline approach. An injector's relative number 

of streamlines supporting a producer is equal to the connection between each pair of injectors 

and producers. Streamline simulations have become increasingly popular due to their quick 

processing speed (Cheng et al., 2007). 

Panda et al., (1996) used artificial neural networks to predict oil production and evaluate 

the interaction between pairs of wells. They used simulated case studies to apply this strategy 

and concluded that artificial neural networks have some limitations when applied to such 

complex systems. In addition, it is generally recognized that these models are difficult to 

understand physically. Albertoni and Lake (2003) used multivariate linear regression analysis 

to quantify interwell communications.  Parra et al. (2023) investigated the suitability and 

significance of using the CRMP-producer-centric approach to characterize both single and 

multiwell undersaturated oil reservoirs during primary recovery. 

Yousef et al. (2006) determined the response of total fluid production to injection signals 

and changes in bottomhole pressure and created a mathematical model based on this. The 

differential mass balance equation for a closed control volume with several injection and 

production wells was essentially solved using this approach. The production response to the 

effective drainage volume of production wells, fluid compressibility, PI, and the coupling 

coefficient between pairs of injection and production wells are related by some unknown 

coefficients in the model. The ability of a system to create fluid can be adequately described by 

these factors. This model and the equation describing the flow of electric currents in a system 

of capacitors and resistors have a special similarity. 
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 Several studies have demonstrated the effectiveness of using these data to characterize 

and manage oil reserves that are undergoing primary or secondary recovery. One of the simplest 

cases for using this model is a waterflooding process. During a water flooding project, 

information on injection and production rates is typically abundant. The groundbreaking 

concept of merely considering production and injection rates to infer connectivity between 

wells was introduced by Albertoni and Lake (2003). To assess interwell communication, they 

used multivariate linear regression (MVLR). To take into consideration pressure loss and the 

lag time between wells, a diffusivity filter was used. Yousef (2006) provided CRM that 

measured interwell communication without the use of diffusivity filters. 

 In recent years, improvements in the CRM method have positioned the model as a 

reservoir management tool capable of assisting in performing key tasks such as history 

matching of production data, forecasting of production rates, scheduling of injection rates, 

detection of injection leakage, and estimation of fracture distribution. Salehian et al., (2018) 

studied a typical realistic reservoir simulation model of a waterflooding process. In this model, 

the intelligent completion valves (ICVs) of smart wells were regulated using conditional 

statements known as procedures within a fully commercial, comprehensive numerical reservoir 

simulator. The simulation data is then used to construct the CRM model, aiming to capture 

interwell connectivities at the zone level. This goes beyond solely relying on interwell 

connectivity data, as smart wells offer control and insight into the injection volume into each 

layer or zone. 

 The CRM has been used in EOR procedures even though the models that have been 

provided so far were primarily designed for water flooding. While in some studies, additional 

developments were made to account for the unique aspects of the EOR process under 

consideration, in some papers, the models previously provided are employed the same way as 

in water flooding. Before more intricate and time-consuming simulation models were created, 

the CRM was a useful tool in many EOR processes by offering insights into the primary forces 

behind pressure support, reservoir heterogeneity, and the advancement of the flood front. 

As an example, to show the applicability of CRM to model an EOR operation, results 

of a simulation by Nguyen (2012) is presented here. CRM was used to model simultaneous 

injection of water and CO2 in a synthetic field.  The field had four producers and two injectors. 

The location of wells is presented on Figure 2. Created two high permeability streaks were from 

injection I1 to producer P1 and from injector I2 to producer P3. The field was operated 

underwater injection from year 2000 to 2030, then the water injection rates were kept constant 
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and CO2 injection was added. The initial reservoir pressure was 5000 psi and all wells are 

bottom-hole pressure constrained at 3500 psi. From 2000 to 2030, the field production was 

driven by water injection. The production rates during the period from 2000 to 2005 had 

fluctuation that was suitable for fitting CRMP. The CRMP results are given in Table 1. It is 

seen that well pairs I1-P1 and I2-P3 have higher gains and P1 and P3 also have smaller time 

constants.  

 

Figure 2. Generated CO2 flooded field permeability map in mD (Nguyen, 2012). 

Table 1. CRMP parameter estimates for the water injection period (Nguyen, 2012) 

Gain P1 P2 P3 P4 

I1 0.44 0.14 0.18 0.24 

I2 0.2 0.24 0.47 0.09 

Time constant 

(days) 

5.03 8.18 5.54 7.51 

 For the purpose of evaluation CRM performance on later CO2 injection, the fitting 

window was selected from May 2038 to November 2050. The CRMP corresponded for the 

producers are shown in Figure 3; the graphical illustration of corresponded matching shown 

only for one producer. CRMP was able to give a good fluid production rate that fits all 

producers. 
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Figure 3. CRMP fit of P1 fluid production rate (Nguyen, 2012). 

 The f and τ values estimated by CRMP are shown in Table 2. I1-P1 and I2-P3 had the 

largest interwell connectivity as expected because of the high permeability channels between 

those well pairs. The results of both parameters were slightly different from the Table 1.   

Table 2. CRMP parameter estimation (Nguyen, 2012) 

Gain P1 P2 P3 P4 

I1 0.62 0.06 0.16 0.15 

I2 0.18 0.16 0.58 0.08 

Time 

constant (days) 

20.90 21.21 22.60 19.12 

 As can be seen from Table 1, for the water injection period, the time constants of 

production wells P1 and P3 should be less than those of production wells P2 and P4. However, 

a significant amount of CO2 flowing into the high permeability channels during this 

simultaneous water and CO2 flood generated a significant amount of total compressibility (ct). 

As a result, the time constants P1 and P3 were almost equivalent to the time constants P2 and 

P4. It can be seen that because CO2 is highly compressible, the time constant for CO2 injection 

is greater than for water injection, compared to the time constants in Table 1. 

Finally, CRMP was used to inject CO2 after introducing water into the synthetic field. 

The data obtained show that CRMP can satisfactorily match production data during CO2 

injection, and the predicted gain and time constants differ from those obtained when CRMP 

was matched to data during waterflooding. 
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 Considering the given example, every EOR technique involves a complex interaction 

of fluids and rock, a straightforward CRM strategy can be used to match historical data and 

anticipate such a process. The investigations that were done in this area are summarized in    

Table 3. The research projects listed in Table 3 demonstrate the advancements made in the 

analysis of various EOR techniques employing CRM for the process of water flooding.  

Table 3. CRM developments and applications to several EOR processes  

Reference (s) EOR processes Highlights 

Sayarpour, 2008 WAG A pilot WAG injection in the McElroy field 

using the CRMT and CRMP and a semi-

empirical power-law fractional flow model 

(Permian Basin, West Texas). 

Salazar et al., 2012 

 

Hydrocarbon gas 

and nitrogen 

injection 

A deep naturally fractured reservoir in the South 

of Mexico was used to predict production rates 

of oil, water, hydrocarbon gas, and nitrogen gas 

using a three-phase, four-component fractional 

flow model. 

Akin, 2014 Geothermal 

reservoirs 

In West Anatolia, Turkey, a geothermal 

reservoir, the technique for reinjecting produced 

water has been improved by the history 

matching of the CRMIP to infer interwell 

connectivities. 

Eshraghi et al., 

2016 

CO2 flooding Application of the CRMP with the semi-

empirical power-law fractional flow model and 

heuristic optimization algorithms for miscible 

CO2 flooding cases with data from a grid-based 

compositional reservoir model. 

Duribe, 2016 Hot waterflooding Used CRM in conjunction with energy balance 

and saturation equations to account for a time-

varying Jj(t) and, subsequently, j(t), mostly 

caused by an increase in water saturation and a 

decrease in oil viscosity. A grid-based thermal 

reservoir simulator was used to compare the 

outcomes. 
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Reference (s) EOR processes Highlights 

Zivar et al., 2022 Low salinity 

waterflooding 

The goal of the study was to see how changes in 

the time constant can describe physical 

processes in a porous medium, such as a change 

in wettability. This work showed the results of 

various experimental and simulation studies that 

the time constant of the model increased when 

the wettability was changed to the water-wet 

state, with the oil-wet medium showing the 

smallest time constant and the water-wet 

showing the highest value. 

2.9 Modeling of Thermal Oil Recovery Processes 

CRM approach is a promising rapid evaluator of reservoir performance, which has been 

recently used for reservoir simulation (Mamghaderi & Pourafshary, 2013). As previously 

mentioned, CRM has traditionally been used for water flooding, however, this work has focused 

on describing and defining the use of CRM as a reservoir modeling technique for Thermal EOR 

processes, namely Hot Water Flooding. Thermal oil recovery can be defined as the recovery 

mechanism in which oil is produced from a reservoir by the supplemental addition of the 

necessary expulsive energy in the form of heat. This recovery mechanism includes methods 

like SAGD, steam flooding, hot water flooding, CSS (huff and puff), and in-situ combustion. 

Generally, recovery, via these methods, is facilitated by the in-situ reduction in oil viscosity 

due to the addition of heat. However, viscosity reduction (and thus oil recovery) may be 

enhanced in these methods due to other physical and chemical changes that become possible as 

heat energy is added.  

 To maintain profitable operations during the thermal recovery process, reservoir 

characterization and management are crucial. Reservoir simulators can be used for this, just like 

in other recovery procedures, to infer energy and fluid flow inside the reservoir by fusing 

geological information, fluid characteristics, and first-principles equations. Simulations can be 

expensive financially and computationally because of the vast volume of input data needed to 

set up these simulators and the unpredictability of the geological data they require. To 

complement simulators and lessen their high computational intensity, many analytical 

approaches to reservoir modeling have been created and put into use. Essentially speaking, 
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thermal processes are extremely complicated, making it challenging to effectively simulate 

them. This is because the viscosity and chemical changes produced by reservoir heating further 

complicate the interfacial and hydrodynamic phenomena that are typically present in 

displacement processes.  

 The literature has a variety of modeling approaches with various focuses, such as 

Gottfried's work (Gottfried, 1965) on modeling thermal recovery in general, Spillette's model 

for HWF (Spillette & Nielsen, 1968), and Youngren's model for in-situ combustion (Youngren, 

1980). Yet, to adequately represent the complexity of thermal recovery processes, these models 

rely on geological data. Moreover, the various assumptions required to develop tractable 

analytical models may result in a loss of generality, rigidity, and frequently erroneous results.  

 Reduced order models, such as those in the CRM family, are appealing as supplements 

or even substitutes for numerical simulators when modeling thermal stimulation processes due 

to their advantageous aspects. With the help of production/injection and BHP variations, the 

CRMs offer a reduced-order, input-output modeling approach that describes reservoirs. The 

models have been successfully applied to primary recovery and other EOR processes since they 

were initially created for water flooding (secondary recovery) operations. This study focused 

on expanding CRM technology to thermal stimulation projects and enhancing CRM capabilities 

for characterization in water-flooded reservoirs. 

 Probabilistic history matching allows obtaining multiple CRM realizations to analyze 

the uncertainty in the parameter estimates and production forecast. For this purpose, Kaviani et 

al. (2014) used the bootstrap, which is a sampling with replacement method. Sayarpour et al. 

(2008) history matched multiple realizations of CRM with a Buckley–Leverett-based fractional 

flow model starting from different initial guesses. Their main objective was to assess the 

uncertainty in reservoir parameters such as porosity, irreducible water, and residual oil 

saturations. Holanda et al. (2015) used a Bayesian framework with the Markov chain Monte 

Carlo algorithm for production data analysis in unconventional reservoirs. 

 As has been studied by Tafti et al. (2013) the identification of the CRM parameters and 

their underlying uncertainty is connected to the following: 

 The most important dynamic aspects of the system must be observed in the output 

signals, which are the production rates. 
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 The amount of data available for history matching, such as sampling frequency (eg, 

whether production data is reported daily or monthly) and length of the history matching 

window; 

 Reservoir system properties such as permeability distribution, fluid saturation and 

overall compressibility (De Holanda et al., 2018). 

 Originally, the CRM was developed as a dynamic reservoir model with interwell 

connectivity estimated from variations in the production and injection data that commonly 

occur in field operations. Thus, ideally, it would not be necessary to change injection rates or 

producers’ BHP merely for the identification of the CRM parameters. However, if in any 

circumstances it is desired to improve the information content of the input/output signals, the 

studies of Tafti et al. (2013) and Moreno and Lake (2014) provide guidelines based on systems 

identification theory.  

Moreno and Lake derived an analytical equation to quantify the uncertainty in 

connectivity estimates for the unconstrained history matching problem, and such an equation 

accounts for the information content of the injection signal and levels of measurement noise in 

the liquid production rates. As previously discussed, the reliability of CRM history-matched 

models is highly dependent on the quality and amount of data available. Several factors might 

contribute to problematic data, e.g., measurement noise, sudden variations in operational 

conditions, partially unrecorded production data, completely missing BHP data, and 

commingled production. Cao (2014) implemented an iterative process for production data 

quality control based on successive CRM fits to the observed production. The periods of 

erroneous or missing data are selected. Then, it is replaced by the CRM prediction. This process 

is repeated until the difference of successive estimated parameters is below a tolerance. One 

relevant application of this workflow is as a preprocessing step in the history matching of grid-

based reservoir models. However, before applying this procedure, one should be cautious and 

ensure that the CRM is a reliable representation of the reservoir dynamics, i.e., the deviations 

in the production data are mainly due to problems in the data rather than caused by a physical 

phenomenon that goes beyond CRM modeling capabilities. 

 CRM has only been used for modeling isothermal processes, despite being successful 

in simulating water flooding and other oil recovery methods. To estimate and optimize future 

output, engineers can quickly and accurately match historical production data using a thermal 

CRM. 
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2.10 Review of Hot Water Flooding 

To profitably produce heavy oil from a reservoir, thermal stimulation is often necessary 

as enhanced oil recovery process. This usually means heating the oil in the reservoir to improve 

its characteristics. Heat is delivered to the reservoir through a fluid (usually steam or hot water), 

combustion of oil in the reservoir, or electrical (resistance) heating. Reservoir heating by HWF 

is still possible and cost-effective option. HWF is actually the most desirable thermal 

stimulation EOR method for viscous oils from an operational aspect. 

HWF has long been used as an agent for viscous oils because it is easy to use, the 

equipment needed to produce and manage hot water is inexpensive, and the approach is 

comparable to the commonly used conventional water flooding (CWF) method. 

Although the use of hot water to extract oil is believed to have begun in the 1930s, the 

analytical model of the process became popular in the 1950s and later. The temperature profile 

in a homogeneous, linear, one-dimensional reservoir subject to HWF was first calculated in 

1955 (Lauwerier, 1955); Van Heyningen J. and Schwartz N. investigated the effect of reservoir 

heating on production characteristics in 1955 (primarily oil viscosity) using the temperature 

model of Lauwerier (1955) (Van Heiningen & Schwarz, 1955). The main processes (chemical, 

thermodynamic and temperature) that could occur during thermal exposure of linear reservoirs 

were described by the generalized mathematical model of Gottfried B.S. in 1965 (Gottfried, 

1965) and three approximations by Thomas G.W. for analytical calculation of temperature 

distribution during the injection of hot liquid in 1967 (Thomas, 1967). 

The thermal streamline approach is a recent breakthrough in hot water flood modeling. 

Pasarai and Arihara (2005) developed this method to benefit from the accuracy and speed of 

the first simplified method developed for conventional water flooding (Pasarai & Arihara, 

2005). Over the years, improvements in computing power and thermal flooding modeling 

techniques have led to faster models. Unfortunately, most of the models used today still require 

reservoir geological data. This continues to cost for engineer’s time to determine parameters, 

especially in situations where speed is more important than accuracy. Hence, the CRM is fast, 

inexpensive, and does not require geological data, it is well suited to provide this important 

characterization option. 
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3. METHODOLOGY 

This chapter describes the procedure for obtaining CRM simulation results using the 

actual history data from generated reservoir models with different features in the commercial 

simulator CMG. For this purpose, four types of reservoir models were considered. The 

procedure for obtaining adequate CRM results is based on core steps such as choosing the 

appropriate CRM model, applying the constraints for each case, and using the appropriate 

Solver type. Detailed methodology is presented in Figure 4.  

 

Figure 4. Workflow for the CRM application in history matching for Hot water injection processes. 

3.1 Methodology Description 

In this section a detailed description of how to apply CRM for the history matching 

process between the actual production data and modeled data, and obtaining the parameters for 

cases under evaluation that are used to predict the flow of hot water injection processes is 

explained.  

3.1.1 Collecting injection and production history data from commercial 

simulator CMG  

Since one of the objectives of this project is to evaluate the application of the CRM 

during hot water injection; it was decided to estimate the theoretical concepts first to ascertain 

its application using synthetic field data. As before was mentioned that CRM couples only 

injection/production data as an input data, process of getting the initial data was simplified, 

since the synthetic reservoir models can have an idealistic parameter. Each case has similar 

injection/production rates, injection temperatures and oil viscosity values. Injection data 

consists of injection rate versus time data as shown in Figure 5.  

Collect injection and 
production history data 

from commercial 
simualtor CMG 

Run CRM 

for all cases

Evaluate CRM 
parameters 

(τ and f)

History matching

process

Prediction of Hot water 
injection processes by 
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Figure 5. Injection rate of well I1  

3.1.2 Application of CRM to Model Homegeneous/Heterogenous  cases 

This step includes several components including selecting the most suitable model of 

CRM, defining model constrains, evaluating time constant and well connectivity parameter 

values, and estimating the error between the actual and modeled production values. For this 

project CRMP - Capacitance-Resistance Model-Producer Based was selected. This CRM 

representation is characterized by its ability to account for the influence all injector wells on the 

drainage volume of each producer well in the reservoir, and CRMP has one τ and 𝑓 values for 

each injector-producer well pairs.  

To determine the appropriate parameters (τ and f), MS Excel Solver tool was used. It 

adjusted the τ and f values within specified limits and applied constraints to ensure satisfactory 

outcomes. From a CRM perspective, well connectivity, f, is defined as the rate fraction of 

injected fluid from an injection well that contributes to the production of production wells. 

CRMP based model imposes f as constraints shown in Equation 14 (Eshraghi et al., 2015), sum 

of the well connectivity values should not be less than 0 and/or equal to 1, and should be only 

positive values; if reservoir is homogeneous the fraction of injected fluid should be distributed 

equally to all production wells.  

fij ≥ 0, ∑ 𝑓𝑖𝑗 ≤ 1

𝑁𝑖𝑛𝑗

𝑖=1

 
Eq. 14 

Generalized Reduced Gradient (GRG) Nonlinear type was chosen for MS Excel Solver 

tool. GRG Nonlinear solver is an optimization algorithm used mostly for solving the nonlinear 
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optimization problems. This type of solver searches an optimal solution by maximizing or 

minimizing the objective function while satisfying the applied constrains.  

The application of CRM methodology is demonstrated through four case studies, 

focusing on the history-matching process of production rates from reservoir models subjected 

to conventional water and hot water injection. Two evaluation parameters (τ and f) will be 

analyzed using the CRMP on the history data from the CMG-STARS simulator. These case 

studies are: five spot pattern homogeneous reservoir; streak cases, heterogeneous model case.   

1. Case 1 addresses the application of CRM in models featuring hot water injection, 

compared to normal water injection results. The homogeneous model, with evenly 

distributed porosity and permeability values throughout the reservoir, is thoroughly 

described in the next chapter. 

Cases 2 and 3 involve reservoir models with conductive paths (streaks) created between 

different production-injection well pairs. The purpose of creating these models is to see to what 

extent two evaluation parameters will change under different circumstances. 

2. Case 2. The reservoir models with a high permeability streak of 500 mD between P1-I1 

well pair under normal water and hot water injection; 

3. Case 3. The reservoir models with high permeability streak of 1000 mD between P2-I1 

well and 1500 mD between P3-I1 well pairs under normal water and hot water injection; 

4. Case 4. The model was created to evaluate the application of CRM in a heterogeneous 

reservoir with randomly distributed porosity and permeability values to see to what 

extent the values of the evaluation parameters will change considering changes in input 

parameters (porosity and permeability). 

Case 1. Homogeneous reservoir  

To validate the concepts developed in the previous chapters, the method was applied to 

the simple reservoir with a predictable flow behavior. The reservoir properties are listed in 

Table 4. The model consists of 1 injector and 4 producers wells; all vertical wells. The injector 

well is located in the middle of the reservoir and 4 producer wells are located in each corner of 

the model. The values of injection rates were generated randomly with the fluctuations of values 

starting from a minimum of 30 m3/day and a maximum of 122 m3/day. The surface oil rate 

values were constant for all 4 producer wells and were equal to 200 m3/day. Due to the similarity 

of the model and input parameters varying uniformly in the same range, it is easy to realize a 

similar production behavior for all 4 producer wells. Figure 6 shows the location of the wells. 
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The time window used for the history-matching is 3835 days (10 years), for the water 

breakthrough already happened in all producers to mitigate the nonlinearity in the CRM 

parameters. Additionally, to visualize the changes in the viscosity of oil in the future running 

of the model with the case of hot water flooding.  

Table 4. Reservoir properties for Case 1. 

Parameter Value 

Number of grid blocks 100*100*1 

Grid block sizes 10*10*1 

Initial Reservoir Pressure, kPa 5000 

Porosity 0.2 

Viscosity of oil, cp 45 

Horizontal permeability, mD 200 

Vertical permeability, mD 20 

Injection temperature, °C 100 

 

Figure 6. Well location for Case 1. Model with 1 injection (in the middle) well and 4 producer wells (in each 

corner). Permeability is equal to 200 mD. 

Once a flooded reservoir has been created and is suitable for optimization, the necessary 

data related to reservoir history and reservoir modeling are collected for CRM application.  
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Case 2. Reservoir models with high permeability streak of 500 mD between P1-I1 

well pair  

The case study presents the application of CRM on different cases of heterogeneity of 

reservoir models considering two models with conventional water injection and hot water 

injection. The streak case models have the same input parameters as the previous models with 

normal hot water injection. Figure 7 displays the high permeability streak location; the 

permeability of the reservoir is equal to 200 mD, except for the pathway between producer P1-

injection well I1 pair, where the permeability is equal to 500 mD.  

 

Figure 7. Well location for Case 2. Model with 1 injection (in the middle) well and 4 producer wells (in each 

corner). Red line corresponds to the location of high permeable conductive path between producer well P1 - 

injection well I1 pair equal to 500 mD. 

Case 3. Reservoir models with high permeability streak of 1000 mD between P2-

I1, and 1500 mD between P3-I1 wells pairs  

The case study presents the application of CRM using reservoir models with streak case 

heterogeneity between P2-I1 and P3-I1 wells under conventional cold injection and hot water 

injection. As in the previous case, the reservoir properties remained the same, except the 

permeability between producer P2-I1 well, equal to 1000 mD, and P3-I1 with a permeability 

value of 1500 mD, for both models. Figure 8 shows the location of these streaks between the 
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wells. The study case was created to evaluate the changes in the CRM parameters (τ, fij), to 

validate their impact on CRM performance.  

 

Figure 8. Well location for Case 3. Model with 1 injection (in the middle) well and 4 producer wells (in each 

corner). Red line corresponds to the conductive path with permeability 1500 mD between producer P3-injection 

I1 well pair; green line corresponds to the conductive path with permeability 1000 mD between producer P2-

injection I1 well pair. 

Case 4. Heterogeneous reservoir model 

To estimate the effect of hot water flooding on time constant and connectivity in a more 

realistic case, a heterogeneous reservoir model was created with randomly distributed porosity 

and permeability values through the whole reservoir. Reservoir model with dimensions 50 

(i)*50 (j)*2 (k) was developed by CMG simulator in STARS model (Figure 9). 8 production 

and 5 injection wells were added to the model, with the minimum porosity value equal to 10 % 

(0.1) and maximum 50% (0.5), and the minimum permeability value equal to 50 mD and the 

maximum value equal to 2000 mD. Initial pressure of the reservoir is 5000 kP; injection 

temperature is 80 °C.  
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Figure 9. Location of wells in synthetic field within the range of permeability values. Model with randomly 

located 8 production and 5 injection wells. 

All created models have two types of injected water, namely CWF and HWF. All input 

parameters were kept the same for both cases. 

3.1.3 Evaluation of CRM parameters (τ and f) 

Next steps of methodology as history-matching process, prediction of hot water 

injection behavior, and evaluation of modeling error will be explained in the next chapter. To 

do the history-matching process, the actual production history data and modeled data were 

taken. Graphical representation of these both data helps to evaluate whether or not the process 

went well. To measure the accuracy of the process Mean Absolute Error (MAE) in percentages 

was calculated using previously mentioned data by calculating the average differences between 

the actual and predicted values, and by finding the average of these absolute differences, and 

dividing the MAE by the actual values and multiplying the outcome to 100. As a fitting 

parameter for both curves R2 values were calculated. It is the proportion of variation of one 

variable (objective variable or response) explained by other variables (explanatory variables) 

in regression. This is a widely-used measure of the strength of the relationship in regression. 

This coefficient is defined as it is shown in Equation 15 (Kasuya, 2018): 
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1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 
Eq. 15 

where 𝑦�̂� denotes the value of the objective variable (y) predicted by regression for the 

ith data point. The second term of this expression is the residual sum of squares divided by the 

sum of squares of y. 
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4. RESULTS AND DISCUSSIONS  

Case 1. Homogeneous reservoir  

CWF. Case 1 represents two similar models with different injected fluid types. One 

model with CWF and the second one with an injection of hot water at 100°C. Figure 10-11 

show the graphs of the CRM modeling of the total liquid production and oil production of each 

well for Case 1 with CWF and HWF. Table 5 represents the values of time constant and well 

connectivity for the results shown above. 

     

     

Figure 10. Total production rate vs estimated production rate for all producer wells of Case 1 under CWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual total 

production rate 

 

 

 

 

 

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000

L
iq

u
id

 r
at

e,
 m

3
/d

ay

Time, days

Producer well - P1

0

5

10

15

20

25

30

0 1000 2000 3000 4000

L
iq

u
id

 r
at

e,
 m

3
/d

ay

Time, days

Producer well - P2

0

5

10

15

20

25

30

0 1000 2000 3000 4000

L
iq

u
id

 r
at

e,
 m

3
/d

ay

Time, days

Producer well - P3

0

5

10

15

20

25

30

0 1000 2000 3000 4000

L
iq

u
id

 r
at

e,
 m

3
/d

ay

Time, days

Producer well - P4



39 

 

Table 5. CRM coefficients of the reservoir model under conventional WF of Case 1 

Number of wells 𝜏 𝒇 MAE, % 

P1 394.58 0.26 20.92 

P2 375.06 0.24 20.58 

P3 375.44 0.24 20.81 

P4 376.06 0.24 22.05 

      

      

Figure 11. Oil production rate vs estimated production rate for all producer wells of Case 1 under CWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual oil 

production rate 

Table 6. CRM coefficients for modeling oil fractional flow and MAE of history matching  

process for CWF of Case 1 

Number of wells α β MAE, % 

P1 6.80E-06 1.318 14.638 

P2 5.61E-07 1.55 14.75 

P3 5.72E-07 1.55 14.82 

P4 3.83E-07 1.59 15.819 
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According to the results obtained from Table 5, and the Figures 10-11, it can be 

concluded that CRM is successful to model the injection-production history within the whole 

time window of the process since a good agreement is attained between two curves of 

production rate data. Since the Case 1 is considering an ideal case of homogeneous reservoir, 

as it was expected the values of time constant are more or less close to each other.  

Reservoir heating in a homogeneous reservoir typically doesn't affect steady-state flow 

patterns, thus maintaining the consistent interpretation of gains, even during a hot 

waterflooding. Unless significant alterations occur that affect the overall reservoir 

characteristics, the fundamental understanding of gains remains unchanged. 

From the Figure 5 it is obvious that I1 injector well will have strong and equally 

distributed connectivities with all 4 producer wells. To predict fractional oil flow the empirical 

power-law fractional flow model (EPLFFM) was used with timing included into the calculation 

of cumulative water injected, Wi and instantaneous water-oil ratio, Fwo, using two fitting 

parameters α and β for flow model  shown in in Equation 16. 

fo(t) =
1

1 + Fwo
=

1

1 + α ∗ Wi
β
 

Eq.  16 

These two coefficients are often determined through the production history-matching or 

calibration using available data from the reservoir. The values of the coefficients presented in 

Table 6. 

HWF. Figure 12 shows the results of history matching process for Case 1 for the 

reservoir model under hot water injection. 
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Figure 12. Total production rate vs estimated production rate for all producer wells of Case 1 under HWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual total 

production rate 

𝜏, 𝑓 and calculated MAE values are shown in Table 7 for Case 1 for the model with hot 

water injection. 

Table 7. CRM coefficients of the reservoir model under HWF of Case 1 

Number of wells 𝜏 𝒇 MAE % 

P1 195.10 0.25 11.01 

P2 194.22 0.25 10.66 

P3 194.22 0.25 10.66 

P4 193.15 0.24 10.32 

Figure 13 represents history matching for oil production rates for HWF of Case 1. 
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Figure 13. Oil production rate vs estimated production rate for all producer wells of Case 1 under HWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual oil 

production rate 

Table 8. CRM coefficients for modeling oil fractional flow and MAE of history matching process for 

HWF of Case 1 

Number of wells α β MAE, % 

P1 9.97E-07 1.57 10.97 

P2 1.00E-07 1.78 13.76 

P3 1.00E-07 1.78 13.76 

P4 4.10E-08 1.87 15.83 

Considering Case 1, which refers to homogeneous models, it was anticipated that results 

of the CRM parameters from model under hot water injection would align with those of CWF. 

The impact of temperature, which is under examination, was only noted in the results 

concerning time constants. Unlike the gains, the time constants has been shown to vary 

significantly even for a cold water flood when saturation changes are significant. In an early-

stage cold waterflooding, the shift in time constant values occurs due to changes over time in 

the PI, which is a function of fluid saturation. Changes in reservoir temperature, leading to 

variations in viscosity, also imply that the productivity index is influenced by temperature 

fluctuations. The capacitance model considers the effects of compressibility, pore volume, and 

PI in nonlinear multivariate regression by introducing a time constant to characterize the time 

delay of the injection signal at the producers. This parameter is based on reservoir 

characteristics.  

A smaller 𝜏 implies a smaller pore volume and compressibility within the system, or 

higher PI values. Conversely, a larger 𝜏 may signify a larger reservoir with lower total 

compressibility or a smaller reservoir with higher compressibility, or extremely low 

permeability values. Compressible fluid provides a larger compressibility in comparison to 
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incompressible one (Eshraghi et al., 2016).  PI is also directly related to the permeability, 

thereby causing variations in the time constant (Nguyen, 2012). 

As the primary objective of the project is to assess CRM's applicability in predicting hot 

water injection processes, an adequate approach is to compare CRM coefficient results between 

CWF and HWF. Tables 5 and 7 illustrate the coefficients for both models using the same 

injected fluid at different temperatures. The data clearly indicates that CRM couples much faster 

during hot water injection compared to CWF. This phenomenon can be attributed to the 

aforementioned parameters. 

Fluid compressibility, although subject to change over time, has minimal impact on 

modeling results. Throughout the simulation process, BHP remains constant. PI values were 

computed for both scenarios, with higher values observed in the case of hot water injection 

compared to normal water injection, due to the easier flow of the injected hot fluid. Since the 

Equation 4 contributes the PI in the calculation of 𝜏, as it is expected from PI values, 𝜏 during 

hot water injection will have the lower values, as it was observed from the results.   

Case 2 

CWF. The model description of Case 2 is given in a previous Chapter 3. Figure 14 

presents results for Case 2 for model with normal WF. 
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Figure 14. Total production rate vs estimated production rate for all producer wells of Case 2 under CWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual total 

production rate 

Table 9. CRM coefficients of the reservoir model under CWF of Case 2. 

Number of wells 𝜏 𝒇 MAE, % 

P1 387.88 0.26 21.20 

P2 377.44 0.24 20.25 

P3 377.52 0.24 20.50 

P4 378.34 0.24 21.72 

Comparing results of the coefficients from CWF of Cases 1 and 2, it is seen that there 

is no considerable changes within applied features in the permeability between P1 producer – 

I1 injection well pair. Figure 15 displays the oil production rates of both modeled and actual 

data. 
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Figure 15. Oil production rate vs estimated production rate for all producer wells of Case 2 under CWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual oil 

production rate 

Table 10. CRM coefficients for modeling oil fractional flow and MAE of history matching process for 

CWF of Case 2 

Number of wells α β MAE, % 

P1 6.71E-06 1.31 14.98 

P2 5.74E-07 1.55 14.63 

P3 5.83E-07 1.54 14.71 

P4 3.92E-07 1.58 15.69 

HWF. Figure 16 display the graphical results of the history matching of hot water 

injection processes for Case 2. 
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Figure 16. Total production rate vs estimated production rate for all producer wells of Case 2 under HWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual total 

production rate 

Table 11. CRM coefficients of the reservoir model under HWF of Case 2. 

Number of wells 𝜏 𝒇 MAE, % 

P1 189.04 0.27 12.46 

P2 182.99 0.24 9.98 

P3 182.84 0.24 10.13 

P4 182.95 0.24 10.80 

Graphical representation of history matching of oil production rates for all producer 

wells are presented in Figures 17. 
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Figure 17. Oil production rate vs estimated production rate for all producer wells of Case 2 under HWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual oil 

production rate 

Table 12. CRM coefficients for modeling oil fractional flow and MAE of history matching process for 

HWF of Case 2 

Number of wells α β MAE, % 

P1 1.43E-06 1.53 11.07 

P2 3.55E-07 1.66 10.24 

P3 3.87E-07 1.65 10.32 

P4 5.15E-08 1.84 15.52 

As mentioned earlier, Case 2 includes reservoir models with additional heterogeneity, 

specifically a high permeability streak between wells P1 and I1. This 500 mD permeability b 

region introduces noise-like variability into the input parameters derived from the CMG. The 

simulation progresses gradually, just as changes in the injection rate cause a performance 

response, similar to measuring voltage or current in an electrical circuit. 

The results obtained for Case 2 indicate minimal changes in both evaluation parameters. 

This can be explained by the fact that the modified high-permeability channel does not differ 

significantly from the overall permeability of the reservoir. Even though there is a region with 

different parameter, other regions properties are homogeneous and symmetric for sides of P2 

and P3 wells. Thus it is reasonable to expect that 𝜏 and 𝑓 values to be about the same. When 

comparing the results of these two parameters, a natural trend is observed: during HWF, the 

constant values tend to decrease, which indicates an acceleration of processes - a phenomenon 

closely related to the viscosity of oil. During the HWF process, the viscosity of the oil gradually 

decreases over time. This pattern is similarly reflected in the parameter 𝑓. However, due to the 

presence of a conductive streak between wells P1 and I1, the 𝑓 values in both scenarios are 
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slightly overestimated compared to other pairs of production-injection wells. This suggests that 

these paths increase the volume fraction of fluid coming from the injection well. 

Case 3 

CWF. Figure 18 show the history matching of actual and modeled values of total liquid 

production rate data for CWF for Case 3, where the regions of high permeable streaks exist 

between the well pairs P2-I1 and P3-I1. 

   

    

Figure 18. Total production rate vs estimated production rate for all producer wells of Case 3 under CWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual total 

production rate 

Table 13. CRM coefficients of the reservoir model under CWF of Case 3. 

Number of wells 𝜏 𝒇 MAE, % 

P1 306.12 0.19 17.06 

P2 370.24 0.30 18.72 

P3 375.13 0.31 18.53 

P4 309.02 0.19 16.22 

History matching for oil production data for all 4 producer wells of CWF for Case 3 is 

shown in Figure 19. 
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Figure 19. Oil production rate vs estimated production rate for all producer wells of Case 3 under CWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual oil 

production rate 

Table 14. CRM coefficients for modeling oil fractional flow and MAE of history matching process for 

CWF of Case 3 

Number of wells α β MAE, % 

P1 6.91E-08 1.73 14.93 

P2 3.78E-04 9.40E-01 17.18 

P3 7.49E-04 1.05 79.11 

P4 5.85E-08 1.74 15.27 
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HWF. Figure 20 shows the graphs of the results for the reservoir under hot water 

injection for Case 3. 

    

    

Figure 20. Total production rate vs estimated production rate for all producer wells of Case 3 under HWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual total 

production rate 

Table 15. CRM coefficients of the reservoir model under HWF of Case 3 

Number of wells 𝜏 𝒇 MAE, % 

P1 148.84 0.18 8.80 

P2 187.75 0.30 11.68 

P3 202.37 0.31 10.92 

P4 145.32 0.18 9.16 
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Figure 21. Oil production rate vs estimated production rate for all producer wells of Case 3 under HWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual oil 

production rate 

Table 16. CRM coefficients for modeling oil fractional flow and MAE of history matching process for 

HWF of Case 3 

Number of wells α β MAE, % 

P1 1.41E-07 1.74 9.98 

P2 4.24E-05 1.21 11.52 

P3 8.44E-05 1.15 11.21 

P4 1.53E-07 1.73 10.38 

According to the description given in Chapter 3, Case 3 is a streak case, is a 

homogeneous reservoir with the permeability equal to 200 mD except where the high-

permeability streaks exist. The results of well connectivity between well pairs are in Table 13 

and 15, for both CWF and HWF, respectively. On the each side of this high permeable barriers 

the reservoirs are homogeneous, thus, connectivity is a strong function of well pair distance.  

The effect of injected fluids temperature and changed permeability values effect on time 

constant parameter more than in case of well connectivity. The time constant of P2 and P3 has 

higher values in both cases of the third scenario. When the water cut is very high or very small, 

reservoir fluid flow is close to a single phase flow (Cao et al., 2014). In this case the total 

mobility of the system is large, thus it takes less time for fluid to move from injector well to 

producer wells, consequently take less time constant values,. However, when water and oil 

saturations compete, it takes more time, thus large 𝜏 values. In this scenario, from obtained 

results of water cut from CMG software, the water cut of these two wells (P2 and P3) increases 

at early time of the simulation which was caused by altered permeability between the well pairs.  
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Case 4. Heterogeneous reservoir model 

Figure 22 presents the total production match for each of the CRMs with the simulated 

results of the numerical model for Case 4. After obtaining the weights and time constants for 

the CRMs, EPLFFMs are used to model oil-production. The parameters αj and βj for each 

producer for CRMP are in Table 18.  History matching of oil production rates are in Figure 23. 

According to the description of Case 4 in a previous Chapter 3, it is a reservoir with distributed 

porosity and permeability values. Table 17 represents the CRM evaluation parameters for all 8 

producer wells. There are 8 parameters of time constant, and 40 parameters of injected water 

fraction from an injector wells to producer wells. The effect of each injector on the surrounding 

producer wells can be obtained from CRM parameters results.  
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Figure 22. Total production rate vs estimated production rate for all producer wells of Case 4 under HWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual total 

production rate 

Table 17. CRM coefficients of the reservoir model under HWF of Case 4 

Number 

of wells 

𝜏 𝐟𝟏𝐣 𝐟𝟐𝐣 𝐟𝟑𝐣 𝐟𝟒𝐣 𝐟𝟓𝐣 MAE, % 

P1 43.33 0.78 0.08 0.06 0.00 0.08 3.56 

P2 30.91 0.05 0.35 0.04 0.11 0.002 5.04 

P3 56.01 0.00 0.10 0.31 0.02 0.05 4.04 

P4 62.66 0.05 0.29 0.27 0.11 0.05 3.87 

P5 120.00 0.004 0.12 0.13 0.56 0.29 4.96 

P6 85.92 0.008 0.03 0.04 0.08 0.13 2.83 

P7 46.592 0.054 0.001 0.000 0.000052 0.233 6.845 

P8 11.726 0.032 0.000285 0.109 0.106 0.149 20.862 
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Figure 23. Oil production rate vs estimated production rate for all producer wells of Case 4 under HWF: the 

dashed black line shows the production profile generated from CRM and the solid line shows the actual oil 

production rate 

Table 18. CRM coefficients for modeling oil fractional flow and MAE of history matching process for 

HWF of Case 4 

Number of wells α β MAE, % 

P1 2.33E-05 1.07 24.71 

P2 1.18E-06 1.33 9.46 

P3 1.48E-05 1.24 6.10 

P4 7.27E-07 1.34 12.86 

P5 3.04E-05 1.06 11.68 

P6 4.45E-04 1.04 5.76 
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Number of wells α β MAE, % 

P7 2.40E-04 9.604E-01 24.24 

P8 1.12E-12 2.34 17.42 

The methodology proposed in the previous section was implemented to analyze 

production and injection data using an Excel spreadsheet. A data set was created for the period 

from 01/06/2000 to 01/01/2010, covering the history of 8 production and 5 injection wells. The 

Generalized Reduced Gradient algorithm, a nonlinear optimization function available in Excel, 

was employed for the analysis. An excellent total production matching results can give 

meaningful model parameters. Good agreement between the calculated with history production 

data was observed. Average error in total liquid production is 6.504 %, and in oil production 

rates 14.03 %. With most R-squared (R2) values being positive, except for P8 well where R2 is 

-5.207 for total production rate and 0.297 for oil production rate, indicating a poorer fit between 

the independent and dependent values for this particular well. CRM demonstrates better 

performance in instances of production located in a high-permeability area with consistent 

production rates at the beginning of the period, there is a notably higher Mean Absolute Error 

(MAE) value compared to other producer wells. The results of the connectivity between well 

pairs are in Figure 24, where lines indicate connection and color differentiates the intensity of 

the connectivity.  

Figure 24 provides a broad overview of the connectivities obtained from CRM. By 

examining the well location map shown in Figure 27 alongside the results presented in Table 

17, and analyzing the outcomes for each well individually, it becomes feasible to categorize 

these wells into groups based on the parameters influencing on both 𝜏 and f values. Well pairs 

such as P1-I1, P2-I2, P2-I4, P3-I3, P5-I4, P6-I5, P7-I5, P8-I4 have connectivity due to their 

close proximity to each other, primarily determined by their geological locations. Conversely, 

well pairs P3-I2, P4-I3, P5-I3, P5-I5, P8-I3, and P8-I5, while not placed in close proximity, 

demonstrate strong connections. For instance, wells P5 and P8, positioned in a high-

permeability zone (1800-2000 mD), display robust connectivity even with wells located in 

different areas of the model.  

When considering both proximity and the number of supporting injection wells, wells 

such as P1, P2, and P7 exhibit similar 𝜏 values (43.336, 30.919, and 46.592, respectively) due 

to their proximity to their injection wells, and with no other injection wells affecting their 

performance in the case of P1 and P7. Additionally, as an example, wells P3 and P4, with 
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slightly higher 𝜏 values, are likely located in zones with comparatively lower permeability, 

despite being supported by multiple injection wells. 

 

Figure 24. Connectivity map of a heterogeneous hot water injection reservoir model case. Connectitvities 

presented in figure are interpreted as it is presented below (𝒇 below 0.1 are not highlighted in figure) 

𝑓 = 0.5 − 0.8 
 

𝑓 = 0.2 − 0.4 
 

𝑓 = 0.1 − 0.15 

Results show that the CRM is capable of capturing the heterogeneity of the reservoir 

through the parameter estimates, particularly when the contrast in heterogeneity is high. Figures 

25-27 illustrate the error distribution in the first three cases for both CWF and HWF. Upon 

analysis of the first and second cases, it's evident that HWF yields error values approximately 

half those observed during CWF. This reduction can be attributed to the dominant role of 

viscosity reduction, where the mobility of heated oil relative to water and the reservoir's relative 

permeability significantly influence production outcomes. CRM performs more effectively 
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when the behaviors of water and oil are similar. Nonetheless, given that the initial viscosity of 

oil remains at 45 cp during CWF, there are no alterations in the viscosity of oil. Comparing 

error values in case three, wells with high-conductive pathways exhibit higher error rates 

compared to those where permeability remains unchanged. Since CRM operates as a signal 

capturing model and performs optimally in undisturbed systems, such changes are considered 

as noises in the input signal, altering output results. As previously noted, connectivities dictate 

the extent to which production rates vary in response to changes in injection rates. Thus, 

modifying connectivities, equivalent to adjusting the system's permeability, can cause shifts in 

response, leading to significant errors in history matching. Calculated Mean Absolute Error 

(MAE) values across all cases for HWF indicate a moderate degree of inaccuracy, with total 

liquid production rates ranging from a maximum of 20.8% to a minimum of 2.84%, and oil 

production rates from a maximum of 15.83% to a minimum of 5.76%. 

 

Figure 25. The error distribution of Case 1 
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Figure 26. The error distribution of Case 2. 

 

Figure 27. The error distribution for Case 3. 
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5. CONCLUSIONS AND RECOMMENDATION 

The existing approach of applying CRM to model water flooded reservoirs has been 

expanded to simulate reservoirs undergoing hot water injection. In order to validate this 

developed model, synthetic reservoir models generated by a commercial simulator were utilized 

across four case studies during this project. The adapted CRM equations were applied to these 

reservoirs, using CRMP. Various scenarios were explored to assess the CRM's performance in 

hot water injection processes, and additional features were developed to comprehend the 

underlying significance of the CRM's evaluation parameters under specific assumptions. The 

outcomes of these experiments were analyzed to identify the predominant factors influencing 

the overall modeling performance. During the modeling of these cases, factors such as well 

placements, average permeability of the reservoirs, productivity index, and fluid 

compressibility were taken into account. 

In summary, the following conclusions can be made: 

1. The application of CRM to several synthetic case studies demonstrated its reliability 

and effectiveness in history-matching of reservoir performance. The CRM proved 

capable of modeling hot water injection processes, as corroborated by the results from 

an ideal homogeneous reservoir model. 

2. CRM offers an economical and efficient solution, allowing for preliminary assessment 

of reservoir characteristics and prediction of future production with minimal reservoir 

data, particularly injection and production data, requiring minimal computational 

resources and time. 

3. Both nearly-homogeneous and heterogeneous reservoir models were developed to 

evaluate the CRM parameters and assess the general performance of CRM under 

different scenarios. 

4. Valuable insights into the timing of water flooding can be obtained by estimating the 

distribution of injected water from the injection well to various production wells, as well 

as identifying the duration for which the injection signal reaches the producer wells. 

5. Both parameters, 𝜏 and 𝑓, are influenced by several factors including permeability 

levels, measurement inaccuracies, and well placements.  

6. 𝜏 is particularly sensitive to changes in the obtained productivity index values compared 

to fluid compressibility. 
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7. It was observed that 𝑓 yields better results in models characterized by high permeability 

or close proximity between wells. 

In modeling, simulation is the process of simulating a real-world system or process to 

comprehend its behavior under various circumstances. The purpose of simulation is to generate 

data that mimics the behavior of the real system, allowing analysts to study its dynamics, make 

predictions, and test various scenarios without directly intervening in the real system. Common 

approach in simulation where uncertain parameters are modeled using probability distributions 

it means that instead of assuming fixed values for these parameters, they are represented as 

random variables following certain probability distributions. Each time the simulation runs, it 

samples values for these parameters from their respective distributions, generating different 

outcomes. Relying solely on a single realization of these probability distributions may not 

adequately capture the full range of possible outcomes or fluctuations in the system. In 

scenarios like reservoir management, where uncertainties play a significant role, it's crucial to 

assess a wide range of potential outcomes, including best and worst-case scenarios. To address 

this limitation, one can employ techniques like Monte Carlo simulation, which involves running 

the simulation multiple times with different sets of randomly sampled parameter values. By 

aggregating the results from these multiple simulations, analysts can gain a more 

comprehensive understanding of the system's behavior under uncertainty, including the 

likelihood of various outcomes and the range of possible fluctuations. 

As a suggestion for future research, it would be beneficial to explore the optimization 

of CRM processes on wells with hot water injection. Through CRM optimization, various 

objective functions can be defined to enhance future reservoir performance. These could 

include maximizing cumulative field oil production within a set of time period, such as a year, 

by adjusting field injection wells allocation while keeping the total injection rate constant; or 

minimizing cumulative field water production over a defined time period by reallocating field 

injection while maintaining the same total injection rate in the field. 
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