
Edge-assisted human action recognition for video
surveillance

Aibek Aitkozha
Department of Computer Science

Nazarbayev University
Astana, Kazakhstan

aibek.aitkozha@nu.edu.kz

Artur Iskakov
Department of Computer Science

Nazarbayev University
Astana, Kazakhstan

artur.iskakov@nu.edu.kz

Yerkebulan Kenzhebek
Department of Computer Science

Nazarbayev University
Astana, Kazakhstan

yerkebulan.kenzhebek@nu.edu.kz

Nguyen Anh Tu
Department of Computer Science

Nazarbayev University
Astana, Kazakhstan

tu.nguyen@nu.edu.kz

Abstract

The project addresses the significant challenges posed
by the vast amount of video data generated by Internet
of Things (IoT) devices, especially surveillance cameras,
by developing an edge-assisted human action recognition
system (HAR). Utilizing edge computing and deep learn-
ing technologies, including advanced pose estimation and
convolutional neural networks (CNNs), the system aims to
provide real-time HAR with minimal latency and reduced
reliance on cloud resources. Key components include end
devices for data capture, a cloud server for model training
and management, and a web application for user inter-
action. This integration sets a new standard in real-time,
edge-assisted video analytics by tackling traditional chal-
lenges related to latency, scalability, and efficiency. The
project not only progresses through stages such as dataset
creation, pipeline development, and software architecture
design but also demonstrates the practical application and
effectiveness of these technologies in enhancing video
surveillance systems.

I. INTRODUCTION

The core challenge lies in proposing and implementing
an effective solution that can handle the massive influx of
video data from IoT devices, particularly surveillance cameras,
with minimal latency. Traditional cloud-based processing
frameworks are often overwhelmed by the volume and velocity
of this data, resulting in unacceptable delays that compromise
the functionality of real-time human action recognition (HAR)
systems. This necessitates a novel approach that can efficiently
process high volumes of data on-site without relying heavily
on cloud computing resources.

Motivation:
The motivation for this project stems from the need to enhance
the responsiveness and efficiency of video surveillance
systems. By addressing the latency and scalability challenges,
the system aims to improve monitoring applications that are

critical for public safety, security, and operational efficiency.

Solution Overview:
Our solution leverages edge computing and advanced deep
learning technologies, including convolutional neural networks
(CNNs) and pose estimation, to develop an edge-assisted HAR
system. This system is designed to perform real-time action
recognition with minimal latency and reduced dependency on
cloud resources. Key components of our system include end
devices for robust data capture, a cloud server for centralized
model training and management, and a web application to
facilitate user interaction. Through strategic integration of
these technologies, our project not only demonstrates the
practical application but also sets a new standard in real-time,
edge-assisted video analytics.

This report is organized into several sections, each aiming to
provide a detailed view of the different aspects of our project:

1) Background and Related Work: The section describes
the development process and challenges encountered in a
project.

2) Project Approach: Details the technologies and frame-
works used in our solution, explaining the rationale
behind each choice and how they integrate to form our
system.

3) Project Execution: Describes the process of implementing
our edge-assisted HAR system, including the develop-
ment of the DD-Net model, dataset preparation, and the
setup of our edge computing environment.

4) Evaluation: Discusses the methodologies employed to
assess the performance and effectiveness of our HAR
system. This section includes a summary of the testing
phases, the metrics used for evaluation, and the results



obtained.

5) Conclusion and Future Work: Summary of the project
outcomes and the impact of our work. The discussion
extends into potential future developments that could
further enhance the system’s performance, suggesting
continuity and future engagement with the academic and
professional communities.

6) References: Sources that informed our understanding and
supported our claims throughout the report.

II. BACKGROUND AND RELATED WORK

Human action recognition has become a pivotal technology
in numerous applications ranging from security surveillance
to patient monitoring systems. The integration of edge
computing has further revolutionized this field by enabling
real-time processing and responsiveness, essential in dynamic
environments. This section reviews relevant technologies and
methodologies that underpin our project, highlighting the
evolution of action recognition systems and the role of edge
computing.

Human Action Recognition
Traditionally, human action recognition has been implemented
using Recurrent Neural Networks (RNNs) due to their ability
to model temporal sequences effectively. While effective,
RNNs often suffer from high latency and computational
inefficiency when dealing with long video sequences (Yang,
F. et al., 2019) [1]. Consequently, there has been a shift
towards using Convolutional Neural Networks (CNNs) and
pose estimation models which offer substantial improvements
in speed and accuracy. Our project employs the DDNet model,
a lightweight CNN that provides robust action recognition
from skeletal data, offering a significant enhancement over
traditional RNN-based approaches.

Edge Computing in Video Analytics
Edge computing facilitates data processing at or near the
source of data acquisition, which in the context of video
analytics, translates to immediate processing on edge devices
such as cameras and IoT devices. This approach minimizes
latency and bandwidth usage, which are critical for real-time
applications. NVIDIA’s Jetson Xavier AGX, an advanced
edge computing device, serves as the backbone of our system,
processing data directly from video inputs for immediate
analysis.

Software and Tools
Our system leverages NVIDIA’s DeepStream SDK, a compre-
hensive toolkit for building streaming analytics applications.
DeepStream facilitates the creation of sophisticated processing
pipelines that integrate neural networks for video, audio, and
image understanding. For robust communication between the
edge device and the cloud, we utilize Kafka for message
queuing and Redis for data caching, ensuring efficient and

reliable data flow.

During the development process, we encountered several
challenges in implementing effective broadcasting solutions.
Inspired by the approach of Gustavsson and Christensen [2],
which advocated for direct server-client communication via
WebRTC without relying on intermediate services, our system
adopted WebRTC to enable real-time video streaming within
our web application. Additionally, the work of Dian et al.,
which explored the use of the H.264 compression standard
alongside various communication protocols, influenced our
decision to implement RTSP for creating video sources [3].
This approach enhances the adaptability of our system to var-
ious user scenarios, providing flexible and efficient streaming
solutions.

III. PROJECT APPROACH

To implement our solution, we used a variety of ready-made
technologies:

1) Docker: We used Docker to simplify deployment by
packaging software components into containers, ensuring
consistency and efficiency across different environments.

2) ZeroMQ: We chose ZeroMQ (zmq) for inter-
communication between system components as it offers
high-performance, lightweight messaging without the
need for a dedicated message broker.

3) Kafka: We used Kafka for efficient and reliable handling
of high-throughput, real-time data delivery between edge
devices and servers, which is a common solution for
storing and processing a continuous flow of data.

4) Redis: provides fast and low-latency data access that we
use for edge-server communication in order to achieve
the lowest possible latency.

5) Vue.js: was chosen as the frontend framework for its
simplicity and our prior experience with the tool. Its
component-based architecture facilitated modular devel-
opment, while reactive data binding ensured dynamic and
responsive user interfaces.

6) Centrifugo: was used for notifications due to its real-time
capability, providing low-latency message broadcasting
over WebSockets, which enhances user experience with
immediate updates.

7) PostgreSQL: we chose Postgres due to its reliability,
ACID compliance, and good support for advanced data
types and SQL standards, making it highly reliable for
complex applications.

8) MediaMTX: we decided to use MediaMTX for stream
broadcasting over different protocols due to its ability to
efficiently multiplex and manage multiple media streams.

9) YoloV8: The YoloV8 model was chosen for pose estima-
tion due to its high-speed real-time processing capabilities
and improved accuracy in detecting and localizing skele-
ton key points, even in complex visual environments.



10) Kubernetes: We chose Kubernetes for managing con-
tainerized applications due to its powerful orchestration
capabilities, enabling automatic scaling, load balancing,
and self-healing of applications across clusters.

11) GStreamer: we used this framework to create video
streaming applications.

12) Nvidia Deepstream SDK: was used for video analytics
pipeline as it optimizes processing through GPU acceler-
ation, enabling real-time streaming analytics at scale with
reduced infrastructure costs.

In order to minimize latency and distribute the load between
the integral parts of the system, we have come up with the
following architecture:

Fig. 1

There are 2 main components in our solution: Edge device
and Server.
Both of them have a list of integral partitions
Edge device:

1) ZeroMQ instances:
For communication between integral components, we
used ZeroMQ sockets. We’ve placed 2 zmq-sockets in
the edge device:
Input socket - used for passing data from camera feed,
RTSP source, and module component;
Output socket - used for providing data to Kafka&Redis
sink;

2) USB cam source container
Docker container that we use to process the camera’s
USB feed with the usage of GStreamer. Within this
container, the feed from the camera is encoded and sent
to the input zmq-socket.

3) Module container

This component is built on top of DeepStreamSDK and
used for estimating pose and extracting the human skele-
ton joint positions. This component accesses the camera
feed from the input zmq-socket, decodes it, and sends
extracted joint information to the output zmq-socket.

4) Camera Management API
API service written in Golang and designed for automatic
deployment of an RTSP source container on an “add
camera” call.

5) RTSP source container
Container that broadcasts frames to the input zmq-socket
with usage of GStreamer framework.

6) Kafka-Redis sink container
The Kafka-Redis Sink Adapter sends video
stream metadata to Kafka and frames content
to Redis. Frame content location is encoded as
<redis-host>:<redis-port>:<redis-db>/
<redis-key>. <redis-key> is in the format
REDIS_KEY_PREFIX:UUID where UUID is a unique



identifier of the video frame.

Server:

1) ZeroMQ instances:
For inter-communication in the server we also used zmq:
Input socket - used for passing the frame data from
Kafka&Redis source container to Module Container;
Output socket - used for storing the resultant frames with
the skeleton and action drawn on them;

2) Kafka broker and Redis instance
The components are responsible for receiving and storing
each frame data sent by the edge device.

3) Kafka-Redis source container
The Kafka-Redis Source adapter container takes video
stream metadata from Kafka and fetches frame content
from Redis. Frame content location is encoded as ¡redis-
host¿:¡redis-port¿:¡redis-db¿/¡redis-key¿.

4) Module Container
The container is also built on top of DeepStream SDK and
responsible for fetching frame metadata from the input
zmq-socket, analyzing the human skeleton join positions
provided, and using the DD-net to classify on what action
has been performed on given metadata. Then it draws
the human skeleton on a frame and writes the label
of action. Decodes the resultant frames and publishes
them in output zmq-socket. It also sends requests to the
backend service (API) when a certain action has been

detected.

5) Always-on-sink container
The Always-On RTSP Sink Adapter streams the video
through RTSP, LL-HLS, and WebRTC. This adapter
consistently transcodes the incoming stream to maintain
uninterrupted streaming, even if the source ceases opera-
tion. Under such circumstances, the adapter will continue
to broadcast a static image until the source resumes data
transmission. When the Nvidia Runtime is accessible,
this adapter utilizes the DeepStream SDK to perform
hardware-based transcoding and scaling of the incoming
stream.

6) Postgres
Database for storing data about users, notifications, ex-
isting cameras, and their connections.

7) API
Backend service provides a list of endpoints for control-
ling users, cameras, and notifications.

8) Centrifugo
Centrifugo instance is being used for broadcasting no-
tifications received from the Backend to the Frontend
application via WebSockets.

9) Frontend
Written in VueJs and provides a GUI for authentication,
configuration of notifications, control over camera con-
nections, and statistical graph observations:

(a) Login page (b) Registration page



(a) Profile page (b) Cameras list page

(a) Cameras grid page (b) Camera details page

(a) Add camera page (b) Analytics

IV. PROJECT EXECUTION

Over the last two semesters, our project focused on
developing an edge-assisted HAR system to address the
challenges posed by the high volume of video data from
IoT devices.

Dataset Development
Initially, we realized the DD-Net on an edge device, starting

with installing the necessary dependencies and integrating the
network. To enhance our model, we collected a custom dataset.
This dataset comprises 300 videos, including three distinct
actions: hand-waving, boxing, and walking. Each action is
captured in a variety of angles to enhance the model’s ability
to generalize. We collected 100 videos for each of chosen
actions. We took 70 videos of each action type and added
them to train sample, while other 30 videos of each type were
used as a test stample.



Fig. 6

DD-net training and Pose Estimation
In order to start training DD-net we needed a pose estimation
model that will preprocess the videos, extract joint positions
from them and pass the extracted data to DD-net. During

our testing phase, we evaluated multiple pose estimation
models to identify the most effective solution for our system
and ultimately decided to move on with the YoloV8 pose
estimation.

Fig. 7



We trained our DD-net with our custom dataset, ran
some tests and were satisfied with the resultant performance.
However, for the final evaluation and more sophisticated tests
we retrained our DD-net model with the JHMDB dataset and
achieved the accuracy of 77%.

Management
For our project, we’ve picked Notion as our project manage-
ment tool, aligning with agile methodology. Notion’s real-
time collaboration and customizable workspace helped us
organize tasks, track one-week sprints, and keep all project
documentation in one place efficiently. Its ability to adapt to
different project needs makes it a good fit for smooth project

management.

Research and Architecture
Despite the successful training of DD-net and its incorporation
with the YoloV8 pose estimation model, we encountered high
latency during the initial trials on the NVIDIA Jetson device.
This prompted us to revise our architecture by incorporating a
server to distribute the workload between the edge device and
the server, optimizing both the processing speed and system
responsiveness. Extensive research was conducted to select the
most effective technologies and practices for real-time video
streaming and efficient data transfer between services.

Fig. 8

During the development of our edge-assisted HAR system,
we faced significant challenges in achieving effective load
distribution for video processing. To address these challenges,
it was imperative to explore and understand the prevailing
methods used in video surveillance for data sharing and
service communication. Consequently, we conducted extensive

research on popular video surveillance architectures and their
communication strategies. This investigation provided us with
a wealth of knowledge that informed our architectural deci-
sions, enabling us to experiment with different approaches and
assess their efficiency.



Fig. 9

After rigorous integration of various methodologies and
testing of multiple technologies, we successfully devised a
solution that met our expectations for low latency and high
efficiency.

Backend and Frontend
We also designed and implemented the backend and frontend
components to support the system’s architecture effectively.
The backend was structured through two distinct services
written in GoLang, which communicated seamlessly with each
other to fulfill the architectural needs. These services were
crucial in handling CRUD operations and managing the flow of
data across the system. On the frontend, we employed Vue.js
to develop responsive web interfaces. This choice enabled

us to provide dynamic visualization of the video streams
and real-time notifications of recognized actions, enhancing
user interaction and overall system usability. These integrated
efforts ensured that both backend robustness and frontend user
experience were optimized to meet the demands of our edge-
assisted HAR system.
Evaluation
The final stages of the project were dedicated to system evalua-
tion, where we experimented with various classifiers integrated
with DD-Net to assess their impact on inference duration
and overall latency. This evaluation helped us understand the
performance bottlenecks and optimize our system accordingly.

Fig. 10



In the evaluation phase of our project, considerable effort
was dedicated to conducting extensive testing to measure sys-
tem performance, focusing on latency, seconds per frame, and
other key metrics. This process was both resource-intensive
and time-consuming but essential for pinpointing system bot-
tlenecks and areas that needed improvement. The insights

obtained from these evaluations were critical in systematically
refining our system. Through continuous testing and adjust-
ments, we enhanced the effectiveness of our edge-assisted
HAR system, demonstrating the importance of thorough and
iterative evaluation in achieving optimal performance.

V. EVALUATION

The evaluation of our edge-assisted human action recogni-
tion (HAR) system incorporated comprehensive testing using
the JHMDB dataset, focusing on both model accuracy and in-

ference performance across different computing environments.
The JHMDB dataset was represented in 3 splits of train and
test sets.
So the first split contained 660 train and 268 test samples:

Fig. 11

With the highest accuracy(standalone DD-net) of 78.4%. The second split contained 658 train and 270 test samples:

Fig. 12

With the highest accuracy(standalone DD-net) of 77%. The third split contained 663 train and 265 test samples:



Fig. 13

With the highest accuracy(standalone DD-net) of 78.9%

Our accuracy testing involved three configurations: DD-net
alone, DD-net embedding with a Support Vector Machine
(SVM) classifier, and DD-net embedding with a Random
Forest (RF) classifier. The results, as shown in Table 1,
indicate that the DD-net embedding +RF achieved the highest
accuracy at 77.22%. The incorporation of the SVM classifier
and standalone DD-net resulted in a slight decrease in accuracy

to 77.21% and 76.96% respectively. This suggests that the
DD-net accuracy might be enhanced with the selection of
proper classification solutions, however, the accuracy with
other classifiers doesn’t change dramatically. For the accuracy
values, we calculated the means of average model testing
accuracy.

TABLE I: Accuracy comparison on JHMDB

Model #param Accuracy

DD-net DDNet: 1790565 77.21%

DD-net embedding + SVM

DDNet: 1790565

Number of Support Vectors: 203

76.96%

DD-net embedding + RF

DDNet: 1790565

Number of Trees: 100

Total Number of Nodes: 3192

77.22%

Inference performance was assessed on two types of
devices: a high-powered local device and a more constrained
edge device.
Local Device:
- GPU: RTX 4070TI
- CPU: 12th Gen Intel(R) Core(TM) i7-12700F
- RAM: 64 GB

- GRAM: 12GB
Edge Device:
- GPU: 512-Core Volta GPU with Tensor Cores
- CPU: 8-Core ARM v8.2 64-Bit CPU, 8 MB L2 + 4 MB L3
- RAM: 32 GB



TABLE II: Inference time on local device

Model #inferences #Frames Total time Inference per second FPS

DD-net 89900 2876800 93.4907 sec 961.593 30770.98

DD-net embedding + SVM 89900 2876800 108.0295 sec 832.1801 26629.76

DD-net embedding + RF 89900 2876800 212.7462 sec 422.5692 13522.22

The local device tests (Table 2) showed that the standalone
DD-net was the fastest, achieving an inference rate of 961.593
per second and a frames per second (FPS) rate of 30770.98
on the local device. The addition of SVM and RF classifiers

slowed the inference speeds to 832.1801 and 422.5692
inferences per second, respectively, which directly impacted
the FPS rates.

TABLE III: Inference time on edge device

Model #inferences #Frames Total time Inference per second FPS

DD-net 89900 2876800 633.5781 sec 141.8925 4540.56

DD-net embedding + SVM 89900 2876800 768.0183 sec 117.0545 3745.74

DD-net embedding + RF 89900 2876800 2056.4742 sec 43.7156 1398.90

On the edge device (Table 3), all models demonstrated a
significant drop in performance due to hardware constraints.
The DD-net maintained the best performance relative to the
other classifiers but showed a substantial decrease to 141.8925
inferences per second and 4540.56 FPS. The SVM and RF
classifiers experienced more pronounced degradation, with the
RF classifiers notably reducing to only 43.7156 inferences per
second and 1398.90 FPS.

The data highlights the trade-offs between model complex-
ity and computational efficiency, especially in edge-computing
scenarios where resources are limited. While the DD-net alone
provided the best balance of accuracy and speed on both device
types. This is particularly evident in the edge device scenario,
where the resource-intensive nature of SVM and RF classifiers
resulted in noticeable slowdowns.

TABLE IV: Model latency on a local device

Model Preprocessing (mean, msec)
Feature extraction

(mean, msec)

Classification

(mean, msec)

Total time

(msec)

DD-net 0.05 0.84 0.06 0.95

DD-net embedding+SVM 0.05 0.86 0.21 1.12

DD-net embedding+RF 0.09 0.89 1.33 2.32

Table 4 details the latency measurements across the stages
of preprocessing, feature extraction, and classification for each
model configuration on a local device:
DD-net showed the lowest latency with a total time of 0.95
milliseconds (msec), demonstrating its efficiency in handling
the entire process swiftly.
DD-net with SVM classifier experienced a slight increase
in total latency to 1.12 msec. The notable rise was in the

classification stage, where the time increased from 0.06 msec
to 0.21 msec, reflecting the additional computational overhead
introduced by SVM.
DD-net with RF classifier had the highest latency at 2.32 msec.
The classification stage saw a significant increase to 1.33 msec,
indicating that RF’s computational complexity considerably
affects performance.



TABLE V: Model latency on an edge device

Model Preprocessing (mean, msec)
Feature extraction

(mean, msec)

Classification

(mean, msec)

Total time

(msec)

DD-net 0.27 5.89 0.76 6.92

DD-net embedding+SVM 0.35 6.18 1.39 7.92

DD-net embedding+RF 0.90 6.34 13.44 20.68

Table 5 examines the same model configurations but eval-
uates their performance under the constrained resources of an
edge device:
The latency results from both devices highlight the perfor-
mance trade-offs associated with integrating more complex
classifiers like SVM and RF with the DD-net model. While
the local device could accommodate the increased demands
of SVM and RF with relatively minor impacts on latency,
the edge device showed significant performance degradation,
particularly with the RF classifier.
Another important parameter to evaluate was a performance
measurement of the DD-net standalone model in handling
different scenarios based on the number of individuals present

in the video streams. To achieve this, we selected a series
of video samples, each varying in resolution, size, and frame
rate, but specifically categorized by the number of persons
appearing simultaneously—ranging from one to eight. These
videos were used to systematically assess the impact of both
the number of streams and the number of persons on the
model’s inference latency and the seconds required per frame
on a local device. This comparative approach allowed us
to understand the scalability of the DD-net model under
increasing complexity and to identify potential limits in its
capability for real-time human action recognition, particularly
in densely populated video scenes.

1 person:
- type: video/mp4 720x1280
- size: 3.8 MB
- duration: 13.54 s
- Frame rate: 25

2 person:
- type: video/mp4 640x360
- size: 3.8 MB
- duration: 10.97 s
- Frame rate: 23.976

5 person:
- type: video/mp4 640x360
- size: 1.073 MB
- duration: 5.56 s
- Frame rate: 25

8 person:
- type: video/mp4 640x360
- size: 1.5 MB
- duration: 9.96 s
- Frame rate: 25

TABLE VI: Impact of #streams and #persons on the inference latency in local device

Latency for 1s Latency for 2s Latency for 3s Latency for 4s Latency for 5s

1p 0.0166 sec 0.0235 sec 0.0350 sec 0.0458 sec 0.0559 sec

2p 0.02645 sec 0.0432 sec 0.0631 sec 0.0802 sec 0.0983 sec

5p 0.05214 sec 0.0996 sec 0.1246 sec 0.1954 sec 1.1673 sec

8p 0.0738 sec 0.1324 sec 0.5554 sec 3.2366 sec 6.6184 sec

The performance experiments conducted on the DD-net
standalone model with varying numbers of persons in the
video streams on a local device show significant insights into
the model’s scalability and real-time processing capabilities.
As detailed in Table 6, the latency increases markedly with
the number of persons in the video. For videos with one
and two persons, the increase in latency over five seconds is

relatively linear and manageable, suggesting that the model
handles fewer subjects with better efficiency. However, for
videos containing five and especially eight persons, the latency
escalates dramatically, particularly after the third second, in-
dicating a substantial decrease in performance as the model
processes more complex scenes with multiple individuals.



Fig. 14

TABLE VII: Impact of #streams and #persons on the inference seconds per frame in local device

sec/frame for 1s sec/frame for 2s sec/frame for 3s sec/frame for 4s sec/frame for 5s

1p 0.0401 sec 0.0401 sec 0.0401 sec 0.0401 sec 0.0402 sec

2p 0.0264 sec 0.0418 sec 0.0419 sec 0.0420 sec 0.0420 sec

5p 0.0404 sec 0.0407 sec 0.0409 sec 0.0414 sec 0.0484 sec

8p 0.0403 sec 0.0405 sec 0.0422 sec 0.0530 sec 0.0667 sec

The seconds per frame data from Table 7 supports these
findings. The frame processing time remains consistent for
videos with one person regardless of the stream’s length,
maintaining around 0.0401 seconds per frame. However, as
the number of persons increases, while the initial seconds
per frame remains stable, there is a noticeable degradation in
processing speed in more populated videos (5 and 8 persons),

especially as the duration extends beyond three seconds. For
the eight-person video, the seconds per frame more than dou-
ble by the fifth second. This degradation reflects the increased
computational burden imposed by multiple subjects, leading to
longer processing times per frame, which can impact real-time
application performance.



Fig. 15

The same experiment was conducted on an edge device.

TABLE VIII: Impact of #streams and #persons on the inference latency in the edge device

Latency for 1s Latency for 2s Latency for 3s Latency for 4s Latency for 5s

1p 0.2994 sec 10.6092 sec 21.4768 sec 30.9822 sec 41.3507 sec

2p 5.8382 sec 18.8700 sec 31.7397 sec 45.1986 sec 58.5522 sec

5p 8.1650 sec 17.6127 sec 27.5082 sec 37.8781 sec 47.8628 sec

8p 26.5756 sec 57.7842 sec 88.9997 sec 118.6557 sec 154.4855 sec

The experiment conducted on the edge device reveals a
significantly heightened inference latency and per-frame pro-
cessing time compared to the local device, particularly as the
number of persons in the video streams increases. Table 8
demonstrates a drastic increase in latency for all configurations
on the edge device, with especially severe spikes for higher

person counts, such as in the 8-person scenario where latency
reached over 154 seconds at the five-second mark. This starkly
contrasts with the relatively more stable latency growth ob-
served in the local device settings, where the model managed
to maintain lower latency even with increasing complexity.



Fig. 16

TABLE IX: Impact of #streams and #persons on the inference seconds per frame in the edge device

sec/frame for 1s sec/frame for 2s sec/frame for 3s sec/frame for 4s sec/frame for 5s

1p 0.0409 sec 0.07149 sec 0.1037 sec 0.1319 sec 0.1627 sec

2p 0.0639 sec 0.1136 sec 0.1627 sec 0.2140 sec 0.2649 sec

5p 0.0992 sec 0.1677 sec 0.2394 sec 0.3145 sec 0.3870 sec

8p 0.1472 sec 0.2730 sec 0.3990 sec 0.5185 sec 0.6631 sec

Similarly, the seconds per frame data from Table 9 shows
a substantial increase across all configurations on the edge
device, suggesting that each frame takes longer to process as
the number of persons increases. For instance, in the one-
person scenario, the time per frame increases from 0.0409
seconds to 0.1627 seconds over five seconds, while the eight-
person scenario sees an initial frame time of 0.1472 seconds

escalating to 0.6631 seconds. This degradation in performance
is far more pronounced than on the local device, indicating that
the edge device struggles significantly under the computational
demands imposed by more complex video streams, affecting
its suitability for real-time action recognition applications in
dense scenarios.



Fig. 17

VI. CONCLUSION AND POSSIBLE FUTURE WORK

Our comprehensive evaluation of the edge-assisted human
action recognition (HAR) system using the DD-net model
has provided valuable insights into its operational dynamics
and performance across varying conditions. The results from
extensive testing clearly illustrate the model’s strengths and
areas needing improvement, particularly in handling multiple
streams and different numbers of individuals in real-time video
surveillance.

Model Latency and Performance:

The standalone DD-net model demonstrated the best perfor-
mance in terms of both accuracy and inference speed on less
complex scenarios, making it highly suitable for edge devices.
However, as the complexity of the scenarios increased—with
more individuals in each frame—the latency and processing
times escalated significantly. This is especially noticeable in
edge computing environments where computational resources
are more constrained than in local devices. The marked
increase in latency and per-frame processing times with higher
person counts underscores the need for models that are not
only accurate but also efficient in resource utilization for edge
deployment.

Impact of Scene Complexity:

The experiments highlighted a clear dependency of latency on
the number of streams and the number of persons captured,
with performance degrading as these variables increased. This
degradation was more pronounced on edge devices than on
local devices, suggesting that the current model architecture
may need to be simplified or further optimized for scenarios
expected to handle dense crowd scenes to avoid performance
bottlenecks.

Strategic Implications for Future Development:

These findings are critical for guiding the next steps in the
development of our HAR system. They suggest that while
the DD-net model serves well under conditions with fewer
individuals, alternative strategies may need to be considered
for more complex applications. This could involve exploring
more sophisticated machine learning techniques, software
architectures, and hardware based support acceleration that
maintain accuracy without compromising the speed required
for real-time processing or considering a hybrid approach that
dynamically adjusts the computational strategy based on the
current load and scene complexity.
The experiments highlighted a clear dependency of latency on
the number of streams and the number of persons captured,
with performance degrading as these variables increased.
This degradation was more pronounced on edge devices



than on local devices (server), suggesting that the current
model architecture may need to be simplified or further
optimized for scenarios expected to handle dense crowd
scenes to avoid performance bottlenecks. Moving forward,
continuous optimization of the model architecture will be
essential to enhance its scalability and efficiency. By focusing
on developing reliable HAR systems that meet the real-time
processing requirements of modern edge deployments, we
aim to provide effective surveillance solutions that are both
responsive and resource-efficient.

REFERENCES

[1] F. Yang, S. Sakti, Y. Wu, and S. Nakamura, “Make skeleton-based action
recognition model smaller, faster and better,” 2019.

[2] J. Gustavsson and H. Christensen, “Webrtc for peer-to-peer streaming
from an ip camera,” 2019. Student Paper.

[3] D. Chu, C.-h. Jiang, Z.-b. Hao, and W. Jiang, “The design and implemen-
tation of video surveillance system based on h.264, sip, rtp/rtcp and rtsp,”
in 2013 Sixth International Symposium on Computational Intelligence and
Design, IEEE, Oct. 2013.


