Emen, AST-based programming language

Bexultan Tokan, Bekzat Kabdrashev, Marat Serikbayev, Nurlybek Surpkelov
Adviser(s): Hashim Ali

1. Executive Summary (10%)

The goal of our senior project, "Emen," is to overcome the traditional text-based programming
languages' difficult learning curve and error-prone character, which deter many newcomers.
Emen is a programming language that takes a new approach by using an Abstract Syntax Tree
(AST) and combining a customized editor and compiler to reduce common syntactic and
semantic problems. The constraints found in current programming environments and the
advantages of visual languages like Scratch for education served as the inspiration for this
project. By making programming more approachable and less daunting for novices while
maintaining its power and flexibility for more experienced programmers, Emen seeks to
transform the programming industry.

Our team used the Agile process to create Emen, a functional programming language with a
feature set, by utilizing development technologies including Git, Go, and Raylib. Type and
variable declarations, function calls, support for logical and arithmetic operations, static arrays,
and control structures like while loops and if-else statements are a few examples of these. By
enabling direct interaction and editing in the user interface (Ul) and providing a visual
representation of the code in AST format, Emen's editor guarantees a syntax-error-free writing
experience.

Significant improvements were made in the spring after the programming language was
successfully implemented with an operating editor and compiler by the end of the fall semester.
A revamped user interface (Ul) influenced by the color scheme of VS Code, a reorganized code
base for easier navigation and maintenance, and the transition from an array to a linked-list
structure for effective code node management were among the modifications. Notably, these
updates improved the backend operations by fixing reference problems and drastically reducing
time complexity.

As it stands now, Emen set the stage for future advancements. Future work ideas include
investigating automatic mistake correction, making sure the language is cross-platform
compatible, and extending its capabilities to accommodate object-oriented programming
concepts. Emen aims to become a standard instrument in programming education and a driving
force behind innovation in software development methodologies.

2. Introduction (10%)

Modern programming languages are quite difficult for novices to learn, primarily due to their
intricate prerequisites. These challenges are frequently made worse by small mistakes that can
lead to tedious syntactic and semantic problems and poor coding techniques. Finding and fixing
these problems is a significant challenge for developers, made more difficult by the requirement
for understandable code and the limitations of compiler error reporting features. Programming
languages do not currently require code to be formatted for readability; programmers are
responsible for this and also have to take care of syntactic and semantic problems. These
elements require a significant amount of a programmer's attention and time, even though they
have no direct impact on the logic of the program.

Compilers do not provide comprehensive static error reporting, which is another major issue.
Compilers are often good at finding type mistakes, but only in the absence of syntactic issues.
For instance, the compiler may refuse to process the remaining code in a C++ program if the
semicolon at the beginning of the program is absent.

As part of our project, we created a system named "Emen" that handles the first problem by
controlling code formatting and syntax. Emen is a programming language that is built on AST,
and it comes with an editor and compiler designed specifically for it.

3. Background and Related Work (15%)

The team project idea was inspired by The Dion Systems[1] research project which served as a
key source of inspiration. The Dion project highlighted the inherent limitations and challenges of
the text-file based languages. Developers often grapple with cumbersome syntax rules,
ambiguous semantics, and time-consuming debugging processes. These challenges not only
create barriers for beginner programmers but also hinder the productivity of experienced
developers. Moreover, the visual based programming language called Scratch[2] also
accomplishes making coding more accessible and intuitive. Its original purpose is to help
children to code by using the visual nature of the program to make it engaging. A key feature of
Scratch is that the code is represented visually as interconnected blocks. Children can observe
the logic and structure of their code clearly without paying attention to textual syntax. This visual
abstract syntax tree (AST) format helps beginner programmers to focus on computational
thinking. The coding environment in Scratch gives immediate visual feedback making it easier to
debug the program. Expanding on these concepts from Dion and Scratch, our project develops
a new format for source code representation to address the issues with syntax, semantics and
debugging.This alternative programming format could supersede traditional systems by making
it more intuitive and efficient.

4. Project Approach (20%)

Agile methodology was used by our team. The main objective of our project implementation was
programming in order to reach our initial ideas. We used development tools such as Go, Raylib
and Git. As a result we implemented the programming language with a developed editor and
compiler in it. The programming language had following functionalities:

- type definitions

- variable declarations

- function declarations, function call

- arithmetic operators (+, *, -, /, %), logical operators (&&, |, !)

- static arrays

- printing for strings and integers

- if, else, while, return

- suggestions of variable and function names
We can see all the functionalities in the editor display and edit directly on the display. The
editing tool makes certain that there are no syntax errors.

IDE

{ Ul of Code H Ul l
Raylib-go

Fig 1. Architecture of a project

This diagram outlines the structure of a software project for an Integrated Development
Environment (IDE). The IDE interacts with several components: it shapes the User Interface
(U1, which includes a specialized section for code (Ul of Code), and connects to an Abstract
Syntax Tree, which is essential for understanding and managing the structure of the code. The
IDE also interfaces with a Compiler that translates the AST into C++ code, and utilizes
Raylib-go, a graphics library for Go language, to enhance the Ul.

fun factorial(n int32) int32
ifn<2
return 1
return n * factorial(n - 1

—

function factorial

b -,
relm e \
™

N,
N in::;E
> function body ;L_H_J
L4
(o0

b

(o (w0 |

return exp

h 4

A

v v /
| N l Function |~ exp

Call

- O @

Fig 2. The code in the editor and in the Abstract Syntax Tree format
This diagram shows the structure of the simple recursive function to calculate the factorial of N.
As it may be seen, each command and variable has their own nodes, and the same variables
refer to the same node across the code (yellow, N). Constants are highlighted in blue. The “exp”
node accounts to an expression node which contains one or more other nodes.

5. Project Execution (15%)

At the beginning, we stepped into the unknown and tested various ideas to build something that
worked. We learned about how compilers work, explored AST-based trees, and looked into the

details of IDEs while working on this project. By the end of the fall semester, we managed to
create a basic version of our product that worked well enough to allow for writing, compiling, and
executing code.

Originally, our aim for the fall semester was just to get the project up and running. But in the
spring semester, we decided to improve the quality of our project. To make it easier to use, we
updated the look of the IDE, taking inspiration from the popular VS Code's color scheme to
make our project look more up-to-date.

We also made it easier to move through the code. Before, users had to navigate through code
nodes, which worked but was not very user-friendly. We enhanced the user experience to allow
for smoother navigation, making it more natural for users to move the cursor through the code.

Moreover, we needed to overhaul the code. We reorganized a large part of it to make it faster
and easier to maintain. Before, all code nodes were kept in an array, and adding a new node
took a long time - a time complexity of O(N), to be precise. Now, by changing to a linked list,
adding a new node requires only O(1) time on average. This change also fixed a bug where
adding a new node in the array would mess up the references for the nodes that came after it.
Now that we use pointers, the references stay correct. Also, we implemented a terminal window
where the output of the code is presented to the user.

These big changes made a significant difference both behind the scenes and in what users see
and experience in the project.

6. Evaluation (20%)

To conduct a more thorough evaluation of Emen, a programming language designed to be
accessible for beginners, we devised a targeted study involving a diverse group of participants.
Our subject pool included six students: three from a beginner programming course, CSCI 115,
where Python is introduced as their first programming language, and three from non-technical
backgrounds, specifically majors in history and world linguistics and languages. This mix was
chosen to assess Emen's usability across users with varying degrees of prior programming
exposure.

The evaluation began with a brief introductory session where participants were given 15
minutes to familiarize themselves with Emen's basic concepts and interface. Following this, they
were tasked with solving entry-level programming problems sourced from acmp.ru, such as “A +
B” and other straightforward mathematical challenges. These problems were selected to
minimize complexity and focus purely on the interaction with the language and its development
environment.

After the test, we conducted a survey to measure the participants' experiences. The survey
included questions on the ease of understanding Emen’s syntax, the intuitiveness of the IDE
(Integrated Development Environment), and overall satisfaction with programming in Emen.

Results:

e Five of the six participants successfully completed all the given problems within the
allotted time.

e Four students highlighted the minimal learning curve required to start programming in
Emen. They appreciated not having to memorize or understand complex syntax rules,
which often pose a significant barrier to beginners.

e All participants favored the visual design of the IDE, which they found to be clear and
helpful in structuring their code visually. This aspect was particularly praised for reducing
the intimidation factor associated with traditional text-based coding environments.

e The feedback was generally positive, with students expressing high levels of satisfaction
with their ability to engage with programming tasks directly and efficiently.

The study provided strong evidence that Emen successfully addresses key barriers for
beginners in programming. Its intuitive design and user-friendly interface make it an excellent
choice for educational environments where students are introduced to programming concepts.
However, for advancing programming skills beyond beginner level, it might be beneficial to
gradually introduce elements of traditional programming to prepare students for more complex
tasks. Future iterations of Emen could also benefit from incorporating features that ease this
transition, maintaining its beginner-friendly nature while expanding its capability to support more
advanced programming needs.

We believe that this evaluation not only confirms Emen's effectiveness as an introductory tool
but also provides insights into areas for further enhancement to cater to a broader learning
curve.

7. Conclusion and possible future work (5%)

In conclusion, our project, Emen, has successfully tackled the challenges faced by novice
programmers by creating a more intuitive and error-resilient programming environment. Through
the use of an AST-based programming language and a custom editor and compiler, we reduced
the frequency and severity of syntax and semantics errors. The enhancements in the Ul coupled
with improvements in code navigation and maintenance, have made Emen a user-friendly
platform conducive to learning and development.

Emen represents a step forward in programming language development, reflecting a potential
shift from traditional text-file based languages to more visual and logical ones. Looking forward,
there are several ways for future work to enhance Emen's capabilities.

e Language Feature Expansion: Incorporating classes, objects, and inheritance could
extend the utility of Emen to more advanced programming.

e Cross-Platform Compatibility: Ensuring Emen runs smoothly on various operating
systems will broaden its accessibility.

e Educational Resources and Documentation: Developing comprehensive tutorials,
documentation, and interactive learning modules could position Emen as an educational
tool for institutions.

e Automated Error Correction: Leveraging machine learning to predict and automatically
correct common coding errors could further simplify the coding process.

The progress made thus far on Emen is just the beginning. With continuous improvement and
adaptation, Emen has the potential to make a difference in the software development world.

8. References

[1] R. Fleury, Webster, and Lechdn, “Dion Systems,” Dion Systems. https://dion.systems
[2] Scratch Team, "Scratch - Imagine, Program, Share," Scratch. https://scratch.mit.edu/

