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Abstract:

Designing high-performance microwave and
millimeter-wave filters is difficult because
small changes in geometric dimensions and
electrical sizes can significantly affect the fil-
ter’s characteristic.  Typically, in filter de-
sign, the initial values of design variables
are optimized to achieve the desired perfor-
mance. In the field of high-frequency RF device
modeling, the use of machine learning (ML)
through artificial neural networks (ANN) has
gained popularity in recent years. Unlike other
RF modeling techniques, ANN-based mod-
els require training with sufficient datasets to
achieve the desired accuracy level. The input
data could be the device’s dimensions, while
the output could be the S-parameters. Once
trained, the ANN-based model can provide
EM-level accuracy and equivalent-circuit-level
speed. Additionally, it is highly scalable, al-
lowing for the introduction of more input pa-
rameters to make the model more versatile and
complex. Therefore, the ANN-based model is
an excellent option for high-frequency RF mod-
eling compared to other techniques. The main
objective of this research project is to develop
an AAN that can be used in design of RF Fil-
ters.
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Preface

RF design is of utmost importance in the field of electrical and computer engi-
neering as it enables efficient wireless communication. However, designing RF
filters involves complex optimization processes which can be time-consuming and
intricate. The integration of Artificial Neural Networks (ANN) in this domain has
opened up new possibilities for improving filter performance and reducing de-
sign iterations.With the advent of better design and optimization techniques, new
technologies such as 5G are more reachable to humanity, that will further make
developments such as autonomous cars, smart cities and fast internet available to
consumers.

I would like to express sincere gratitude to my supervisor professor Moham-
mad Hashmi. With his help. I was able to open a whole new world of RF engi-
neering for myself. Exploring state-of-the-art works and employ new methods and
ideas were extremely pleasurable. Also, I would like to express my gratitude to
NU for providing with library services, along with a lab that has access to high
end simulation software.

Nazarbayev University, April 26, 2024

Arkhat Serikbekovy

<arkhat.serikbekov@nu.edu.kz>

vi



Chapter 1

Introduction

RF devices and circuits constitute essential electronic elements across a wide range
of electronic devices. Beyond the consumer electronics sector, the integrated circuit
(IC) industry is facing increasing pressure due to the substantial demand in areas
such as medical, communication, automotive, and security electronics, in which,
analog/RF components make up over half of the annual total IC shipments [1].
Despite its importance, the design process of RF devices is still a challenging task
in spite of powerful CAD tools.

Microwave and millimeter-wave filters are crucial components in wireless com-
munication systems, both presently and in the future. They are necessary for reject-
ing interference signals or combining multiband signals. However, creating these
filters is an incredibly difficult task, particularly when designing narrowband filters
with high out-of-band rejection at millimeter-wave and sub-THz frequencies. Even
a slight variation in a single resonator’s dimensions can result in a significant shift
in resonant frequency, significantly impacting the filter’s inband reflection char-
acteristics. Therefore, precise adjustments to geometrical parameters are required
during filter design [2].

The conventional approach of using Kirchhoff’s laws and lumped elements in
circuit formulation is insufficient to accurately predict the behavior of a design in
high-frequency signal applications. Instead, it is necessary to use Maxwell’s equa-
tions. Filter design involves numerous parameters, making it challenging to iden-
tify which ones require adjustments based on poor simulated transfer and reflec-
tion characteristics. To address this issue, filter practitioners commonly use circuit
models represented by coupling matrices for narrowband filters with high perfor-
mance. Analytical techniques can diagnose the coupling matrix from measured
or simulated S-parameters [3]. By identifying the relationship between coupling
matrix entries and physical tuning elements, one can determine how to adjust the
design parameters. Another common approach is filter optimization using ini-
tial values of design parameters [4]. Optimization algorithms, such as sequential
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nonlinear programming and evolutionary algorithms, are incorporated into most
commercial electromagnetic software [5].

Two essential challenges are linked to direct electromagnetic (EM)-based op-
timization. Firstly, if the initial design parameters are not sufficiently near the
optimal solution, the optimization process may not yield satisfactory results. Sec-
ondly, the optimization process typically consumes an impractically long time as
it explores various combinations of design variables in full-wave EM simulations,
especially when dealing with high-dimensional optimization variables [2]. There-
fore, new methods are required to propose better solutions for these challenges.

In modern times, there is an ever-growing demand for complex and intelli-
gent algorithms to effectively process and extract valuable information from large
datasets. This need arises in various fields, including healthcare, transportation,
and radio frequency systems, where it is crucial for design, improvement, and
optimization purposes. Neural networks are considered as advanced tools for
achieving high accuracy in the design and optimization of numerous RF devices
[6], including antennas,active and passive filters, and resonators.

These modules are capable of learning the behavior of various components and
circuits, including both passive and active ones. Once trained, a neural network
can be used for high-level design tasks, providing quick and precise answers based
on its learned behavior. Neural networks offer a more appealing option compared
to traditional methods like numerical modeling, which can be computationally
expensive, analytical methods, which can be challenging to obtain for new devices,
or empirical modeling solutions that may have limitations in terms of accuracy and
range [7].

By using the capabilities of neural networks, in pair with an effective optimiza-
tion technique, both problems faced by the designers related to optimization can
be solved. The main objective of this research project is to overcome the difficulties
related to the design and optimization of RF filters by utilizing artificial neural
networks (ANNs) combined with a suitable optimization technique.



Chapter 2

Background

2.1 State-of-the-art and related works

Artificial neural networks (ANNSs), are systems for processing information de-
signed with inspiration from the human brain’s capacity to learn from observations
and generalize through abstraction [7]. The ability of neural networks to be trained
for learning arbitrary nonlinear input-output relationships from provided data has
led to their application in various fields, including pattern recognition, speech pro-
cessing, control systems, biomedical engineering, and more. Notably, there has
been a recent application of ANNs to address RF and microwave computer-aided
design (CAD) challenges.

Neural network techniques have found application in a diverse range of mi-
crowave scenarios, including embedded passives, transmission-line components,
vias, bends, coplanar waveguide (CPW) components, spiral inductors, field-effect
transistors (FETs), amplifiers, and more. Additionally, neural networks have been
employed in tasks such as impedance matching, inverse modeling, measurements,
and synthesis [2], [8], [9], [10], [11], [12].

Filter design optimization involves seeking an optimal 3D design, defined by
geometric parameter values, within a given filter structure and initial design. The
challenge lies in the highly multimodal nature of filter design landscapes, which
contain numerous local optima and prove difficult for many optimization algo-
rithms. Consequently, research on filter 3D design optimization concentrates on
two key aspects: methods for obtaining a high-quality initial design (such as the
coupling matrix method) and methods for optimizing from the initial design.

Recent years have seen the introduction of successful intelligent filter design
optimization approaches. Space mapping methods utilize low-fidelity models,
such as equivalent circuits, to reduce the need for computationally expensive high-
fidelity electromagnetic simulations [13]. Cognition-driven optimization methods
incorporate designers’ intuition by first optimizing frequency features and then
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optimizing ripple heights. The homotopy method formulates a series of interme-
diate optimization problems from the initial design to the optimal design, proving
effective when the initial design lacks high quality [2].

These methods leverage machine learning techniques to enhance speed. In
comparison to off-the-shelf local optimizers, they achieve more efficient and higher-
quality optimal filter designs. There exist significant opportunities for additional
innovations and applications of ANNs in microwave modeling and design. These
opportunities span from the development of advanced microwave-specific ANN
structures and training algorithms to exploring novel applications. Future methods
should focus on creating ANN models capable of handling broader input ranges
and higher input dimensions while simultaneously requiring less extensive train-
ing data [14]. Given that the effectiveness of ANNSs relies on the quality and ap-
propriateness of the training data, and considering the typically high cost of data
generation in microwave problems, ongoing progress in microwave-oriented ANN
structures, data sampling, and training methods will continue to be crucial.

2.2 REF Filter design using ANNSs

In filter design, the presence of numerous design parameters makes it challenging
to discern which specific parameters should be adjusted based solely on observing
suboptimal simulated transfer and reflection characteristics [5]. To address this
issue, practitioners in filter design often turn to circuit models described by cou-
pling matrices, particularly for high-performance narrowband filters. Analytical
techniques exist for diagnosing the coupling matrix using either measured or sim-
ulated S-parameters. By determining the disparity between the realized coupling
matrix and the design target-coupling matrix and establishing a direct correspon-
dence between coupling matrix entries and the physical tuning elements, one can
readily discern how to adjust the design parameters [8].

Furthermore, the optimization process typically requires an impractically lengthy
duration to explore various combinations of design variables in full-wave electro-
magnetic (EM) simulations, particularly in instances where the dimension of opti-
mization variables is high. To address this challenge, a surrogate model-based opti-
mization [14], have been extensively employed in existing literature. In this context,
the electromagnetic (EM)-based artificial neural network (ANN) is adopted as the
surrogate model in this project. The key benefit of utilizing the ANN model lies
in its capacity to be trained for comprehending intricate nonlinear relationships
involving multiple inputs and outputs. Once the ANN is trained to accurately rep-
resent the input-output relationship, it can rapidly provide precise solutions to the
learned problem [2].
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Methodology

3.1 ANN model

The training of a neural network involves utilizing a dataset to guide the adjust-
ment of weights and biases. Typically, training data for passive components is de-
rived from high-fidelity full-wave electromagnetic (EM) simulations. Once trained,
the artificial neural network (ANN) model can substitute the computationally in-
tensive EM model, offering a balance between circuit-level simulation speed and
EM-level accuracy. The primary computational demand in ANN modeling is asso-
ciated with generating training data through extensive EM simulations. However,
this process can be expedited by leveraging parallel computation technology [2].

3.1.1 ANN Structure and Training

A neural network comprises numerous neurons and a corresponding network of
connections linking them together. Varied neuron types or diverse configurations
of neuron connections can give rise to distinct neural network structures.

Various types of artificial neural network (ANN) structures are selected based
on the specific applications. For modeling uncomplicated relationships and when
data generation is cost-effective, the Feedforward Neural Network (FFNN) stands
out as the simplest and most efficient structure. The quality of neural network
training and the accuracy of the trained model hinge on having a sufficient amount
of training data [14].

In cases where data generation is computationally intensive, the Knowledge
Based Neural Network (KBNN) is a more suitable choice. Its advantage lies in
leveraging prior knowledge to reduce the required amount of training data while
preserving modeling accuracy. For situations where an equivalent circuit or empir-
ical model is impractical, and the input-output response exhibits highly nonlinear
behavior with sharp ripples concerning frequency, the Neuro-Transfer Function
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(neuro-TF) can be applied. It can be trained with a smaller dataset compared to
conventional ANN structures[14].

In scenarios where the model inputs have high dimensionality or a large amount
of training data is available, deep neural networks (DNN) often prove to be supe-
rior choices. Particularly when the neural network outputs represent time-domain
responses, especially those with memory effects, structures like Deep Neural Net-
works (DNN), Recurrent Neural Networks (RNN), or Time-Delay Neural Networks
(TDNN) become necessary[14].

3.1.2 Data Preprocessing

The artificial neural network (ANN) models take the geometrical dimensions and
frequency variable of the filter as input. Given that the values of these geometric
and physical frequency variables can vary significantly across orders of magnitude,
there is a concern with sigmoid neurons experiencing saturation when presented
with large inputs. Saturation occurs when the derivative of the sigmoid function
approaches zero, impeding the learning process of the ANN model. To address
this issue, all input variables undergo preprocessing. Suppose an input variable, X,
falls within the range [xmin, xmax]. In that case, its values are linearly scaled to fit
within the range of [-1, 1] using the following:

X — Xmin

x=2 —1 3.1)

Xmax — Xmin
2]

The inverse mapping is used to retrieve the corresponding physical value,
based on the optimized input value for the ANN model:

_ Xmax — Xmin

> — (X4 1) + xmin (3.2)

[2]

3.1.3 Parameter Initialization And Training

To ensure diverse derivatives and updates in the subsequent training process, the
initial weights are randomly generated, making the neurons distinct components
of the artificial neural network (ANN) model. Small numbers are used to initialize
the weights, particularly to prevent saturation of sigmoid neurons. This is cru-
cial because a higher number of connections to the neurons in the previous layer
increases the likelihood of the weighted sum having a large absolute value [2].



3.2. Optimization Technique 7

3.1.4 High-Dimensional Filter Applications

In general, the volume of training data increases exponentially with the input
dimension of the model. Developing a single artificial neural network (ANN)
model for an entire filter with numerous geometric variables is impractical. To
address this issue, a filter can be broken down into simpler building blocks. A low-
dimensional ANN model is created for each block independently. Subsequently,
the overall surrogate model of the filter is formed by integrating the ANN models
of these smaller building blocks [2].

Once the model for the entire filter is constructed, and the values of the design
variables are provided, the S-parameters of the filter can be rapidly computed.
The electromagnetic-based ANN model proves to be a valuable tool in filter op-
timization. However, optimal solutions often lie within very narrow valleys in
the landscape of design variables. Additionally, numerous local minima exist that
fail to meet design specifications. The success of filter optimization through local
search relies on having excellent initial values, which must be sufficiently close to
the final solutions.

After choosing a compatible ANN mode depending on the design parameters,
an optimization method should be considered as the next step.

3.2 Optimization Technique

Filter optimization techniques can generally be divided into 3 categories - super-
vised, unsupervised and semi-supervised.

The term "unsupervised" encompasses two key aspects:

1) It has the capability to meet stringent design specifications with a single
button press, eliminating the need for designer interaction, and 2) It possesses a
general applicability, not confined to specific filter structures. The advantages of
unsupervised methods include: 1) Considerable savings in designers’ time and
cost as their efforts are translated into computing time without requiring inter-
action. This is particularly beneficial given the current widespread availability
and reduced financial cost of computing resources. 2) As unsupervised design
optimization is independent of designers’ experience, it is well-suited for average
engineers with limited design expertise [13]. While unsupervised design optimiza-
tion has been successfully implemented for antennas, achieving the same for filters
remains highly challenging due to their unique landscape characteristics.

When it comes to semi-supervised, local optimizers are employed, and in many
cases, designers’ interaction is still necessary to jump out of local optima.

An optimization technique must be chosen and adjusted according to the ANN
so that it can:
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¢ Take the geometrical or physical parameters as input and generate the EM
responses as output.

* Find the geometrical or physical parameters from the given EM responses.

A homotopy optimization technique is designed to achieve the design goal. The
cost function is written as:

K = max(db(S11)passband, —r) + w * max(db(Sy )stopband, —40) (3.3)

Series of homotopy optimizatios are carried out to minimize the cost functions
defined by the parameters related to A as

P = (1 - )\)Pinitial + /\Ptarget (34)
where A =0, 0.1, 0.2,...,1.
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Results and Discussions

Throughout the course of this project, extensive literature analysis was conducted
alongside the simulation of two distinct waveguide filters: a five-pole direct-coupled
rectangular waveguide filter, and a variation featuring one frequency-dependent
coupling. The core of this methodology involved extracting relevant data sets from
the S-parameters of these waveguide filters, subsequently employing advanced
Artificial Neural Network (ANN) models for analysis. Notably, the project also en-
compassed a steep learning curve, introducing us to sophisticated simulation tools
such as CST Studio and ANSYS HEFSS for 3D electromagnetic simulation, alongside
Keysight ADS and MATLAB for constructing ANN models.

To facilitate the training of the ANN models, firstly, filter underwent a decom-
position into six manageable components. Using CST, an electromagnetic model
was meticulously crafted, followed by simulation and extraction of S-parameters,
which were then exported to a touchstone file. Preprocessing of this data was
performed using equation 3.1, followed by its division into distinct training and
validation sets. Subsequently, six distinct ANN models were trained employing
the Levenberg-Marquardt Algorithm, configured with a 3-10-10-4 neuron archi-
tecture, chosen for its optimal performance demonstrated through minimal error
rates. The process continued with the insertion of initial values, culminating in
the plotting of S-parameter outputs post cascading of all six networks, utilizing
consistent frequency values.

4.1 Five-Pole Direct-Coupled Filter

Figure 4.1 shows the structure of a five-pole direct-coupled rectangular waveguide
filter which is symmetric about its center. H-plane irises realize an all-pole Cheby-
shev response. This type of structure is selected due to its ability to be decon-
structed into six separate blocks, which can be used to develop six different ANN
model building blocks using filter decomposition [2]. The ANN model ideally has
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Figure 4.1: Five-pole rectangular waveguide filter. w is the width-distance between iris over the X-
axis, L is the length

w, L and frequency as input and complex value S1; and Sp; as output. As an ex-
ample, the standard WR5 waveguide serves as a basis for designing filters within
the frequency range of 140-220 GHz. The dimensions of the WR5 waveguide are a
width of 1.2954 mm and a height of 0.6477 mm, with the thickness of the H-plane
irises fixed at 0.1 mm. For generating training data for the ANN submodel of the
fundamental building block, the design variable w ranges from 0.3 to 0.9 mm in
increments of 0.1 mm, and the design variable L ranges from 0.2 to 0.8 mm with a
step size of 0.1 mm. This range of design variables allows for the construction of
filters operating across a broad range of frequencies [2].

To illustrate, we consider the target design passband for the five-pole filter,
which spans 159.5-164.5 GHz. The required in-band return loss (RL) level is set
at 22 dB. The initial design variables, determined solely to bring the poles close to
each other, are wl = 0.7 mm, w2 = 0.6 mm, w3 = 0.5 mm, L1 = 04 mm, L2 = 0.5
mm, and L3 = 0.5 mm.From looking at the S-parameters in Figure 4.2 the passband
extends from 162 to 182 GHz, and the worst in-band RL level is a mere 1 dB. If a
direct optimization of the six geometrical variables is attempted using their initial
values, it would prove unsuccessful in finding any solution.

Therefore, an optimization method should be considered that can tackle this
issue. After normalizing the data, building the ANN submodels is the next step.
Zhao and Wu in [2] demonstrated successful design, using homotopy optimization
with ANN surrogate model of the same WR5 waveguide

After the parametric simulation of the building block described above, archi-
tecture of the neural network was to be decided. Code was written in MATLAD.
First, only one network was tested, by dividing the dataset of 49 thousand points
into training and validation sets in the ratio of 70/30. Among one and two hidden
layers, network was tested to receive the least error, and the least error among them
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Figure 4.2: S-parameters of the filter in Figure 4.1

Figure 4.3: Filter decomposition - building block

was received with 3-10-10-4 model, which had an average error of 2.5e-3. How-
ever, in the future, the number of hidden layers could be increased to get a more
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Figure 4.5: S-parameters of the filter with optimized variables — ANN model

accurate model. In literature [2] the error was reduced to 4.2e-6. After minimizing
the error, five other networks were trained.Then, the S-parameters were cascades
in MATLAB to get the combined result.

Finally, the S-parameters from the network were extracted, using the initial pa-
rameters and final parameters which were calculated after homotopy optimization.

It can be seen from the figures above that unfortunately the target design pa-
rameters were not achieved. The S-parameters do not show the desired response.
This may be due to low number of training datasets, different materials and envi-
ronment used in the simulation software, and different architecture of ANN. We
can observe that this method could yield meaningful results and with more fine-
tuning, the target design parameters can be achieved.
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4.2 Five-Pole Filter With One Frequency-Dependent Cou-
pling
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Figure 4.6: Five-pole rectangular waveguide filter. w is the width-distance between iris over the X-
axis, L is the length, s is the length of the square shaped post, d is the distance to the side wall while
h is the height of the post

The incorporation of inline frequency-dependent coupling (FDC) is a straight-
forward method to introduce a single transmission zero (TZ) on the imaginary axis,
enhancing the near-skirt selectivity of a filter. In the context of waveguide filters, a
partial-height metal post can serve as an FDC . As a second example, the design of
a five-pole bandpass filter with one FDC generating a TZ on the upper side of the
passband is presented. The filter structure is depicted in Figure 4.6, and, like the
previous example, it is designed using WR5 waveguide. Similar to the earlier case,
this filter is deconstructed into six building blocks. Five of these blocks consist of
inductive irises, whose ANN model was developed in the preceding example. The
partial-height metal post has a length s of 0.2 mm, and the lengths of connecting
waveguides at both ends are fixed at LO = 0.5 mm.
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Figure 4.7: S-parameters of the filter in Figure 4.6

Optimization of filter of the FDC is more challenging, when compared to the
previous example, because of its asymmetrical structure, there are 12 design vari-
ables that need optimization, encompassing five iris widths, five connecting waveg-
uide lengths, and the parameters d and h for the partial-height post. The intended
filter passband spans 176-187 GHz, and it features a single transmission zero on
the upper side of the passband. After looking at the related literature [2], regarding
this, the initial parameter values are set as follows: w1l = 0.7 mm, w2 = 0.6 mm, w3
=05 mm, w4 =0.6 mm, wb =0.7mm, L1 =0.4 mm, L2 = 0.45 mm, L3 = 0.45 mm,
L4 =045 mm, L5 = 0.4 mm, d = 0.22 mm, and h = 0.32 mm. The S-parameters of
the filter is shown in Figure 4.7, from which we can see that initial parameters are
poor, which will not converge in case of direct optimization.
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Again, Zhao and Wu were able to develop a good-performing filter using the
homotopy optimization method, however, it is believed that more effective mehods
should be researched and considered for this type of design process, which will be
a part of our future tasks.



Chapter 5

Conclusion

Development of innovative tools in the sphere of Microwave and millimeter-wave
design is a cruicial task, which has an immense potential for growth. This project
intends to develop on prior knowledge pertaining to using ANN models in pair
with a robust optimization technique, which has been an emerging concept in the
field of RF Filter design, over the last couple of years. At the completion of Cap-
stone II, an extensive literature review, investigation of the methodology, learning
and gaining a toolbox for these kind of tasks, along with the development of two
waveguides in simulation environment were reported. From the building blocks
of one of the waveguides, six different ANN models were trained, optimized and
shown to be giving results, however, it needs more fine tuning. After getting less
error in ANN, the model in combination with homotopy optimization can be a
solid alternative to current design techniques.

This report provided with background information and state-of-the-art related
works, and the importance along with the place of this methodology in RF de-
sign. There has been works shown in this paper that proved that using initial
design values, fine-tuning filter design parameters can be achieved with the cur-
rent technique and which areas can still be developed. The two main problems
faced by RF filter designers can be solved using those steps.

16
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