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Abstract

Advancements in sensor technology have significantly increased the importance of
hyperspectral imaging (HSI) in various computer vision applications for remote sens-
ing. Modern HSI sensors provide unmatched spectral resolution by capturing images
from satellites and drones, encompassing the electromagnetic spectrum from 400 to
2500 nanometers. This study explores how to use the abundant spectral data effec-
tively, specifically addressing the issue caused by the high dimensionality of HSI data.
We propose a new method that improves the selection of spectral bands for better
segmentation accuracy through the use of a 3D Region Growing Algorithm (RGA).
Unlike other selection methods that primarily identify statistically distinct bands,
our approach focuses on heuristically searching for the most informative bands. This
approach introduces a flexible stopping rule dependent on seed pixel intensity, pro-
viding precise control over segmentation by adjusting to different image contrasts.
Our approach combines spatial and spectral information to achieve context-aware
segmentation. This method has been proven to be effective in various datasets like
Salinas, Indian Pines, Pavia Centre, and a real-world dataset, showing its potential
in remote sensing.
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Chapter 1

Introduction

Over the past few decades, advancements in modern sensor technology have signifi-

cantly increased the importance of hyperspectral imaging in various computer vision

tasks. Hyperspectral Images (HSI) are mostly captured from satellites, aircraft, and

drones. Modern HSI sensors have a spectral resolution ranging from 2 to 20 nanome-

ters, while covering electromagnetic spectrum with a wavelength between 400 and

2500 nanometers [1]. This chapter introduces the research topic by outlining the mo-

tivation for the study, defining the research problem, and providing an overview of

the proposed solution.

1.1 Motivation

The difference of HSI from ordinary RGB images is its ability to provide a notably

greater amount of spectral information. This is because each pixel represents a

high-dimensional vector, usually comprising reflectance data from hundreds of closely

spaced, narrow-band spectral channels. HSI covers a wide spectrum that includes in-

frared, visible, and sometimes ultraviolet light. Thus, these images can reveal details

about objects that are invisible to the naked eye, such as chemical compositions or

thermal conditions [2]. This attribute makes HSI invaluable in fields such as agricul-

ture, food quality assessment, mineralogy, medical imaging, art conservation, among

other areas [3, 4, 5, 6, 7, 8].
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Research shows that different materials reflect, transmit, and absorb light in

unique ways, giving each a distinctive spectral signature [9]. Thanks to the high spec-

tral resolution of HSI, it is possible to distinguish even very similar objects within the

same category, such as different sub-types of trees or rocks. For example, Figure 1-1

illustrates the spectral signatures of different types of Broccoli and Fallow classes.

These signatures were obtained by averaging all pixels associated with a specific type

within the Salinas dataset. For the classes "broccoli_green_weeds_1" and "broc-

coli_green_weeds_2", a noticeable difference in spectral curves can be observed in

the near-infrared range. Meanwhile, for the two sub-types of the Fallow class —

namely, "fallow_rough_plow" and "fallow_smooth" — the difference is significant

across the entire spectral range.

Figure 1-1: Spectral signatures of Brocoli and Fallow classes from Salinas Dataset.

Moreover, HSI enables the detection of changes in the spectral signature of ma-

terials that may be caused by external factors such as environmental conditions or
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biological stressors [10]. Therefore, HSI can be used not only for material identifica-

tion but also for monitoring environmental changes or detecting early signs of disease

in crops and natural ecosystems. By analyzing these spectral signatures over time,

experts can make informed decisions and implement timely interventions.

1.2 Problem Statement

In HSI analysis, traditional segmentation and classification methods often struggle

to efficiently and accurately exploit the rich spectral-spatial information contained

within the data. This is because of the high dimensionality of HSI and the variability

in spectral signatures across different materials [8]. Therefore, a crucial preliminary

step in the analysis of HSI data involves the reduction of its dimensionality [9]. This

step is designed to remove spectral redundancies while preserving vital information

for subsequent analysis.

There are two primary types of techniques for reducing the dimensionality of HSI

data: band selection and feature extraction. Feature extraction transforms the orig-

inal dataset into a new set of features based on certain criteria, typically involving

linear combinations of all original bands [11]. However, this method offers a low

interpretability. Interpretability is essential for applications requiring precise iden-

tification, such as agriculture, environmental monitoring, and urban planning. On

the other hand, the band selection technique chooses specific bands from the original

dataset, preserving the spectral relevance of the channels [12].

Yet, existing band selection techniques often fail to identify the most informative

spectral bands accurately, resulting in sub-optimal outcomes. These methods usually

prioritize statistically distinct bands, possibly overlooking less prominent bands that

contain crucial information for specific tasks [12]. Moreover, these techniques tend

to generalize poorly to datasets for which they were not specifically designed [13].

Additionally, they often neglect the importance of continuity and correlation between

adjacent spectral bands, which are crucial for forming the spectral signature of ob-

jects [14].
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1.3 Proposed Approach

To overcome the limitations of existing band selection techniques, this study presents

a novel method that employs a 3D Region Growing Algorithm (RGA). The method

strategically searches for the most informative spectral bands by evaluating the ac-

curacy of 3D RGA segmentation across different bands. Segmentation starts from

a predefined seed point and grows until it meets a unique stopping criterion. This

criterion dynamically adjusts based on the intensity of a seed pixel, bounded by a

fraction of the average pixel intensity of the entire image. With such flexible control

over the region growing process, the algorithm can adapt to varying levels of signal

strength across different parts of the HSI. Moreover, the method uses a 3D framework

to analyze both spatial and spectral information, resulting in more context-aware seg-

mentation compared to traditional 2D approaches.

Through our experiments across several datasets, including Salinas, Indian Pines,

Pavia Centre, and NERC-ARF, we demonstrate the effectiveness and adaptability

of our approach. The experiments highlight the spectral continuity and correlation

within the electromagnetic spectrum, with a range of bands emerging as most in-

formative for all classes under study. Moreover, these experiments show that even

vegetation types that appear similar may have distinct informative spectral bands.

However, the method may not perform as well in handling small, non-homogeneous

regions.

By using the most informative bands identified in our experiments, the process

of identifying regions of interest can be simplified to focusing only on these specified

bands and neglecting the rest. By concentrating on the most informative bands,

experts can avoid the tedious task of examining hundreds of bands, thus accelerating

the information retrieval process and improving accuracy. Thus, our approach not

only addresses the challenge of high dimensionality in HSI but also helps experts to

detect anomalies in the spectral signature more efficiently.
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Chapter 2

Related works

Currently, numerous studies are focusing on applying machine learning and Deep

Learning (DL) techniques for extracting the most useful spectral information. This

focus stems from the challenge posed by high-dimensional data with which the ac-

curacy of models tends to decrease — a phenomenon known as the curse of dimen-

sionality or Hughes phenomenon [15]. As reducing dimensionality is a critical step in

HSI analysis, this section of the thesis delves into previous research related to spectral

feature extraction and band selection. It concludes with a discussion on the principles

and applications of the RGA.

2.1 Spectral Feature Extraction Methods

Spectral Feature Extraction (SFE) methods can be classified as supervised or unsu-

pervised, based on the necessity of training data, and as shallow or deep, depending

on the use of DL techniques [16, 11].

2.1.1 Shallow Feature Extraction Methods

One of the most commonly used unsupervised shallow SFE method is Principal Com-

ponent Analysis (PCA) [17, 18]. PCA is designed to transform HSI data into a

lower-dimensional space. It does this by projecting the original data onto a new
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set of orthogonal axes that maximize variance and minimize redundancy among fea-

tures. Various adaptations of PCA have been developed specifically for handling HSI

data [19], among which the Maximum Noise Fraction (MNF) is considered more effec-

tive than the standard PCA [20, 21, 22]. Unlike PCA, MNF focuses on maximizing

the Signal-to-Noise Ratio (SNR), thereby effectively managing the noise variations

across different spectral bands. Another notable shallow SFE method is Indepen-

dent Component Analysis (ICA) [23]. ICA aims to separate the original dataset into

independent non-Gaussian components through an unmixing matrix. It can iden-

tify even minor material differences. It is especially useful when PCA struggles due

to insufficient samples to construct reliable statistics because of its dependence on

second-order statistics [24, 25].

By adding kernel functions, the aforementioned methods can address non-linearity

in HSI data. As a result, variations such as kernel-PCA [26], kernel-MNF [27], and

kernel-ICA [28] have been developed. The effectiveness of such techniques relies on

the selection of the kernel function and the accurate estimation of parameters [11].

On the other hand, manifold learning techniques focus on the exploration of local

geometric relationships within the feature space [16]. Thus, they offer a more detailed

understanding of data structure and show superior performance in handling non-linear

data [29]. ISOMAP, for instance, constructs a neighborhood graph, calculates the

shortest paths within this graph, and generates lower-dimensional embeddings that

preserve these path distances [30].

Wavelet Transform (WT), usually used in signal processing, represents another

category of SFE methods. Its main idea is to analyze a signal at different frequencies

with varying resolutions [31]. The 1D Discrete WT is commonly used for spectral

reduction in HSI data [32]. However, recently WT is extended to 3D [33], used with

graph-based methods [34], and with DL techniques such as Convolutional Autoen-

coders [35] and Convolutional Neural Networks [36].

Well-known example of supervised shallow SFE method is Linear Discriminant

Analysis (LDA) and its variants such as Regularized LDA, Local Fisher’s Discriminant

Analysis, Graph-based and Kernelized Discriminant Analysis [37]. These methods
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derive low-dimensional representations from data by establishing various supervised

rules based on data label. However, in the context of HSI feature extraction, DL

methods have gained importance for their effectiveness in recent studies [38].

2.1.2 Deep Feature Extraction Methods

DL methods autonomously learn complex features directly from raw data through

hierarchical layers, offering more distinctive, abstract, and stable features compared

to shallow techniques [16]. Autoencoders (AEs) and Convolutional Neural Networks

(CNNs) stand out as particularly favored models within DL for HSI analysis.

AE typically comprises two main components: an encoder that transforms the

input vector into a hidden representation and a decoder that aims to reconstruct the

original input [39]. It can be used within different learning frameworks. For example,

the AE with hypergraph structure as its backbone is adapted both for unsupervised

and semi-supervised classification of HSI [40]. AEs are also commonly employed in

simultaneous analysis of spectral and spatial information. For example, Variational

AE is used for extracting spectral-spatial features in unsupervised manner in [41].

Another approach combines superpixel-based and band-based similarity graphs within

the AE to effectively use both spectral and spatial information [42].

CNNs, particularly well-suited for image recognition and processing, are widely

used for HSI feature extraction. Although they can be implemented in an unsu-

pervised framework [43, 44], they are more commonly applied in supervised settings.

The recent trend towards 3D CNNs aims to extract both spectral and spatial features

from HSI data, though at the cost of increased training complexity and a higher risk

of overfitting [45, 46]. To mitigate these issues, hybrid methods combining 2D and

simplified 3D CNNs have been proposed [47, 48].

Furthermore, the integration of multiple DL networks has shown promising results

in HSI analysis. For instance, a network with Long Short-Term Memory (LSTM) and

Deep Neural Network (DNN) within the AE framework has been used for nonlinear

HSI unmixing [49]. Another study employed a Stacked AE for unsupervised feature

learning, followed by a 3D Deep Residual Network (ResNet) for classification [50].
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The combination of CNNs with Graph Convolutional Networks (GCNs) exploits both

pixel-level and superpixel-level features [51]. Moreover, a pair of CNN and LSTM

integrates extraction of spatial and spectral features simultaneously [52].

These feature extraction methods transform the initial dataset into a new set of

features through linear or nonlinear combinations of original bands, based on specific

criteria. However, such an approach may complicate outcome interpretation if the

criteria for feature selection are not clearly defined. As a result, when interpretability

is crucial, band selection methods are often preferred for dimensionality reduction.

2.2 Spectral Band Selection Methods

In Band Selection (BS) methods, the selected bands preserve their original physi-

cal meaning, making it easier to interpret the information for specific applications.

BS methods can be categorized into ranking-based, search-based, clustering-based,

sparsity-based, embedding-learning based, and hybrid-scheme based methods based

on their underlying approach [12, 14]. Notably, ranking-based, clustering-based, and

some search-based methods operate under an unsupervised framework [53].

Ranking-based approaches evaluate the significance of each spectral band

based on a predetermined criterion for band prioritization and choose the highest-

ranking bands in an ordered sequence [54]. For band ranking these methods typ-

ically use information metrics such as divergence, entropy, or mutual information,

distance-based metrics including Bhattacharya distance, Kullback–Leibler divergence,

Jeffries–Matusita distance, Hausdorff distance, or Spectral Angle Mapper (SAM),

and dependency metrics measuring correlation and similarity [55]. For instance, a

similarity-based ranking strategy employs the structural similarity index to measure

the similarity between band pairs [56]. Another criterion, Self-Mutual Information

(SMI), evaluates the unique information a single band contributes compared to the

entire dataset [57]. Additionally, the Band Ranking via Extended Coefficient of Varia-

tion (BRECV) method proposes a criterion for selecting bands based on their relative

informativeness, prioritizing those with smaller means and larger standard deviations
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relative to adjacent bands [58]. It is also feasible to integrate various ranking mea-

sures — such as variance, information entropy, and the Optimum Index Factor (OIF)

— for band selection [59].

Clustering-based methods categorize the original bands into groups and choose

representative bands from each group to form the final subset [60]. Conventional clus-

tering algorithms, such as the K-means algorithm [61], hierarchical clustering [62],

and spectral clustering [63], are widely used for grouping bands. In one approach,

adjacent bands are iteratively clustered together using a coarse-fine strategy, with

representative bands chosen based on local density and information entropy [64]. An-

other technique involves generating superpixels — groups of adjacent pixels in an

image merged based on similar characteristics — as a preprocessing step. The Simple

Linear Iterative Clustering (SLIC) method is used for superpixel generation in [65],

followed by clustering with band selection criteria derived from the Relevant Compo-

nent Analysis (RCA) algorithm. The Entropy Rate Superpixel (ERS) segmentation

technique, combined with K-means clustering, also demonstrates comparable effec-

tiveness [66].

Searching-based methods approach band selection as the optimization of a

specific criterion function, aiming to identify the best bands that constitute an op-

timal solution [67]. Like ranking-based methods, the criterion function may involve

similarity-based or information-based metrics [12]. Recent advancements explore al-

ternative criteria. For instance, one study employs a reconstruction-based objective

function to assess a band subset’s ability to reconstruct the original dataset [68].

Another work introduces the Maximum Information and Minimum Noise (MIMN)

criterion to select bands that maximize information while minimizing noise [69].

Search strategies vary across literature too. For example, a Cuckoo Search algo-

rithm enhanced with a Chebyshev chaotic map initialization is proposed to optimize

the search [70]. Additionally, progressive algorithms like genetic algorithms [71] and

particle swarm optimization (PSO) [72] have been applied to the band search task.

Sparsity-based band selection methods employ sparse representation or re-

gression to uncover specific underlying patterns within HSI data [73]. In [74], the
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selection of a sparse subset is achieved through learning pairwise band agreements,

facilitated by a spatial-spectral graph regularizer. Sparse representation can also be

obtained using DL networks, such as AEs [75] or CNNs [76]. Commonly, such meth-

ods integrate attention mechanism. In [77], the authors process each spectral band

independently using band-specific 1x1 convolution kernels. Their model further em-

ploys hard thresholding to discard bands with convolution weights below a certain

threshold, selecting bands with significant features.

Embedding learning-based methods integrate band selection within the op-

timization process of specific application models, such as classification or target de-

tection [78]. Various strategies can be employed within this optimization process.

For example, one study extracts a subset of bands using optimal neighboring recon-

struction, followed by CNN-based classification [79]. Another research applies deep

reinforcement learning to determine an optimal band subset that enhances classifi-

cation accuracy [80]. Similarly, a custom attention network has been developed for

selecting bands specifically for maize seed variety identification [81]. Additionally, a

novel approach introduces a 3D multiscale reconstruction network with three parallel

attention modules to select bands for classification [82].

Recent works in the field usually integrate multiple approaches. For instance, one

method addresses the latent low-rank representation optimization problem by calcu-

lating sparse coefficients and selecting representative bands through spectral cluster-

ing [83]. Another study achieves sparse representation using the attention module of

a GCN and incorporates it into a dense GCN for classification [84]. Approaches based

on ranking and search are also often merged. For example, one technique employs 3D

Discrete Cosine Transform-based information entropy for ranking and the Sequential

Forward Selection algorithm for searching [85]. Moreover, a deep transform model

coupled with K-means combines clustering-based features with embedding-learning

techniques [86]. Embedding-learning methods can also work together with search

methods by merging CNN with genetic algorithms [87].

Integrating advanced ML with spectral band selection introduces new opportu-

nities but faces challenges. Many algorithms are designed to work well with certain
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types of data, which limits their ability to be effective in various areas [13]. Such

methods often prioritize bands with significant statistical differences, potentially ne-

glecting bands crucial for specific tasks [12]. Moreover, they tend to disregard the

importance of the relationship among neighboring spectral bands, crucial for generat-

ing spectral signatures [14]. As a result, existing band selection techniques may fail to

identify the most informative bands, resulting in suboptimal segmentation outcomes.

2.3 Region Growing Algorithm

Region Growing Algorithm (RGA) works by expanding a region from a chosen starting

point, or seed, by including neighboring pixels that are similar to the seed. This

approach was initially introduced in 1994 by Adams and Bischof [88]. The algorithm

is particularly popular in the field of medical imaging, where it is often applied for

segmenting organs or identifying cancerous tissues [89, 90, 91].

Table 2.1: Region Growing Algorithm in literature

Cite Image type Aim Seed selection Stopping criteria

[92] UAV imagery Tree crowns delineation A local maxima approach Euclidean distance <
thershold

[93] DEM Identification of valleys Manual |Pixel-Seed| < 0.02
[94] DEM Under-vegetation flood

detection
Water level measurements Elevation_pixel >=

Elevation_seed
[95] 3D point cloud Class-agnostic point cloud

segmentation
Minimum curvature Learnable parameter from

deep neural network
[96] HSI HSI classification Random from ROI Confidence of CNN

classification
[97] UAV imagery Tree crown delineation Manual Spectral difference and

distance decay
[98] HSI HSI classification Random from ROI Confidence of CNN

classification
[99] HSI Painting segmentation Superpixels Kernel SAM
[100] VHR images Semantic segmentation Random from ROI Confidence of CNN

classification
[101] Grayscale images Identification of cracks in

tunnels
Local threshold
segmentation

(n+2)P/(n+1)P_seed <
threshold

[102] DEM Extraction of terrain
shoulder lines

Calculated flow direction
and slope

Difference in terrain slope
and topographic position
index

The adaptability of the RGA across various applications make it a widely used

tool in the remote sensing field. Table 2.1 summarizes recent studies that have im-

plemented the RGA in remote sensing, employing a diverse range of image modalities
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from ordinary grayscale images to HSI. Grayscale imagery has been employed to iden-

tify cracks in concrete tunnel linings [101]. Unmanned Aerial Vehicle (UAV) imagery,

known for providing high-resolution images of the Earth’s surface, has been used for

delineating tree crowns [92, 97]. The Digital Elevation Model (DEM), which offers 3D

representations of a terrain’s surface, is applied in the identification of valleys, under-

vegetation flood detection, and delineation of terrain shoulder lines [93, 94, 102].

Additionally, one study used 3D point clouds for class-agnostic point cloud segmen-

tation [95], where a point cloud refers to data points generated by 3D scanners to

represent an object’s external surface. Very High Resolution (VHR) images have

been used for semantic segmentation [100], characterized by their ability to capture

the smallest object details with precision. Lastly, HSI has been applied for pixel-wise

classification and painting segmentation [96, 98, 99], demonstrating the extensive

applicability of RGA in processing remote sensing data.

The initial step in RGA involves the selection of informative and distinctive seed

points [103]. Various strategies for seed selection have been explored. Among the

simplest and most common methods is manual selection, either by experts [93, 97]

or through random choice from a Region of Interest (ROI), aided by ground truth

data [96, 98, 100]. Ramli et al. [92] employed a local maxima approach with the

assumption that maxima correspond to treetops. Additionally, certain methods in-

corporate a preprocessing step to calculate specific values, such as water level mea-

surements [94], minimum curvature in a point cloud [95], or water flow direction and

slope [102]. Seeds may also be selected from segmented regions via superpixels or

local threshold segmentation [99, 101].

The region initiates from specific seed point and expands until meeting predeter-

mined growth criteria [103]. A commonly adopted strategy is to apply a threshold to

the difference between the seed point and its neighboring pixels. This difference can

be quantified in various ways, including through pixel intensities [93], water elevation

values associated with pixel positions [94], or terrain slope and topographic position

index [102]. Distance metrics, such as the Euclidean distance [92, 97], and the Kernel

Spectral Angle Mapper [99], are also used to facilitate this process. In [101], the for-
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mula for the stopping condition is designed to cap the number of iterations 𝑛. More

recently, the use of DL models has been explored, where these networks are tasked

with classifying pixels, and a threshold is then established based on the confidence

scores of these classifications [96, 98, 100]. Similarly, encoder-decoder networks have

been applied to directly learn the threshold value from the data [95], indicating a

shift towards more data-driven methods.

All of the above mentioned studies use 2D RGA. It means that the growth is in

spatial dimensions and can happen in 4-connected or 8-connected neighbourhoods as

shown in Figure 2-1. If we assume x and y as positions of the seed pixel, the region can

grow along the vertical and horizontal directions surrounding the seed pixel (Figure 2-

1 (a)). This means growth can occur to the pixels directly above, below, to the left,

and to the right of the seed pixel. Moreover, the region can grow along the diagonal

axes (Figure 2-1 (b)). This includes the four directions mentioned for 4-connected

neighbourhoods, plus the pixels on the diagonal: upper-left, upper-right, lower-left,

and lower-right. The 8-connected approach facilitates a more natural, star-shaped

expansion, allowing for a comprehensive inclusion of neighboring pixels. Therefore,

8-connected neighbourhood is more common in literature [93, 96, 100, 102].

Figure 2-1: Growth directions for 2D RGA.

In the field of medical imaging, the segmentation within volumetric data, com-

monly found in medical scans such as CT or MRI, is performed using 3D RGA [104,

105]. The growth can happen in 6-connected, 18-connected, or 26-connected neigh-

bourhoods as shown in Figure 2-2. This method enhances the traditional 2D RGA by
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incorporating a third dimension, depth. 6-connected neighborhood enables growth

to the immediate top, bottom, left, right, front, and back voxels (Figure 2-2 (a)).

18-connected neighborhood expands this by including diagonal connections in the

same plane and directly adjacent planes (Figure 2-2 (b)). 26-connected neighborhood

further extends the connectivity to include voxels that share at least a corner with

the central voxel or seed (Figure 2-2 (c)).

Figure 2-2: Growth directions for 3D RGA.

However, to the best of our knowledge, 3D RGA has not yet been applied to HSI.

Given the scarcity of labeled HSI datasets, the fact that RGA does not require training

data make it particularly useful for HSI analysis. Furthermore, it operates locally

around a selected seed point, allowing it to process the original image directly without

discarding any spectral-spatial information. This aspect is particularly advantageous

for band selection. The flexibility of the growth criteria allows for easy adaptation

to our specific task. By extending 2D RGA to 3D, we can examine the depth of

the segmentation and analyze the impact of the spectral dimension. By controlling

the spectral band of the seed point, we can select the band from which the region

begins to grow, assessing each band’s ability to effectively segment relevant features.

Therefore, this work employs the 3D RGA to identify the most informative spectral

bands for various classes.
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Chapter 3

Methodology

This chapter provides a detailed description of the methodology used to identify the

most informative spectral bands. As it employs a segmentation-based method, we

first describe the 3D Region Growing Algorithm used for segmentation. Subsequently,

we introduce the set of evaluation metrics designed to assess "informativeness." The

chapter concludes with an overview of the entire process.

3.1 3D Region Growing Algorithm

The flow diagram presented in Figure 3-1 illustrates a 3D Region Growing Algorithm

(RGA) applied to segment HSIs for the purpose of identifying the most informative

spectral bands. The methodology starts with the selection of a seed pixel within the

HSI, characterized by its spatial coordinates (x, y) and a specific spectral band (z).

These spatial coordinates are randomly chosen from the Region of Interest (ROI)

while considering the ground truth of the datasets. Meanwhile, the spectral band is

selected sequentially, ensuring all bands are eventually considered.

Once a seed pixel is chosen, the next step is to select a neighboring pixel from a 6-

connected neighborhood. As depicted in Figure 2-2 (a), it is a pattern of connectivity

that considers adjacent pixels in 3D space, which share a face with the central pixel.

6-connected neighborhood strategy is used as a trade-off between computational effi-

ciency and the precision of region delineation.
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Figure 3-1: Flow diagram of 3D RGA.

The algorithm then evaluates whether the neighbour pixel falls within a specified

growth criteria. Specifically, it is checked if the neighbor’s value is greater than the

seed intensity minus one-tenth of the image’s average and less than the seed intensity

plus one-tenth of the image’s average. If the condition is met, the neighboring pixel

is considered similar enough to the seed to be added to the segmented region.

After a neighbor is added to the segmented region, the algorithm checks if there

are any unchecked neighboring pixels remaining. If there are, the process iterates,

continuing to grow the segmented region by evaluating neighboring pixels. If there

are no unchecked neighbor pixels, the process stops. The output of the algorithm is

a segmented region represented in a binary 3D array, where the segmented pixels are

marked in contrast to the non-segmented, background pixels.
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3.2 Evaluation Metrics

To evaluate the informativeness of spectral bands, two metrics are used: Normalized

Mutual Information (NMI) and Adjusted Rand Index (ARI). These metrics are com-

monly employed to assess the accuracy of segmentation methods. In our analysis, to

derive NMI and ARI scores, a region segmented from a 3D RGA is compared with

the corresponding ground truth region, where a seed pixel originates.

Mutual Information (MI) quantifies the shared information between the two seg-

mentations, providing a measure of similarity between them. MI score between the

segmented image and the ground truth is calculated based on their joint and individ-

ual probability distributions as shown in Equation 3.1.

𝑀𝐼(𝑆,𝐺) =

|𝑆|∑︁
𝑖=1

|𝐺|∑︁
𝑗=1

|𝑆𝑖 ∩𝐺𝑗|
𝑁

log
𝑁 |𝑆𝑖 ∩𝐺𝑗|
|𝑆𝑖||𝐺𝑗|

(3.1)

where 𝑆 is segmentation result and it has |𝑆| number of segmented regions; 𝐺 is

ground truth and it has |𝐺| number of true classes; |𝑆𝑖| is the number of pixels in

segmented region 𝑖; |𝐺𝑗| is the number of the pixels in true class 𝑗; |𝑆𝑖∩𝐺𝑗| is number

of pixels that are in both 𝑖 and 𝑗; 𝑁 is the total number of pixels. So, the formula

sums values obtained for all pairs of segmented regions and true classes.

NMI is the normalized version of the MI. Normalization is done using the Equa-

tion 3.2. Its scale is from 0 to 1, where 0 means no mutual information, and 1 means

perfect information sharing.

𝑁𝑀𝐼(𝑆,𝐺) =
2×𝑀𝐼(𝑆;𝐺)

𝐻(𝑆) +𝐻(𝐺)
(3.2)

where 𝑀𝐼(𝑆;𝐺) is the mutual information between segmentation result and ground

truth; 𝐻(𝑆) and 𝐻(𝐺) are entropy of 𝑆 and 𝐺.

Rand Index (RI) also provides a measure of similarity between two data segmen-

tations. It measures similarity by assessing every possible pair of pixels in the image,

as shown in Equation 3.3. Each pixel pair from the segmentation result may either

be in the same segmented region or in separate regions. Similarly, pixel pairs from
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the ground truth may either belong to the same class or to different classes. Thus,

the RI calculates the proportion of pixel pair agreements — those belonging to the

same or to different classes in both the segmentation result and the ground truth —

relative to the total number of pixel pairs.

𝑅𝐼 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(3.3)

where given 𝑆 is the segmentation result and 𝐺 is the grounf truth, 𝑇𝑃 (True Positive)

is the number of pixel pairs that are in the same region in both 𝐺 and 𝑆; 𝑇𝑁 (True

Negative) is the number of pixel pairs that are in different regions in both 𝐺 and 𝑆;

𝐹𝑃 (False Positive) is the number of pixel pairs that are in the same region in 𝑆 but

in different regions in 𝐺; 𝐹𝑁 (False Negative) is the number of pixel pairs that are

in different regions in 𝑆 but in the same region in 𝐺.

The original RI’s limitation is it does not account for the possibility of achieving

a high score by chance, especially in situations with a large number of clusters or

when cluster sizes are uneven. The ARI adjusts the RI by considering the expected

similarity of all pairings under random classification, as depicted in Equation 3.4. This

normalization ensures that the ARI can give a score that is more indicative of the

actual agreement between two clusterings, beyond what would be expected by chance.

The value of ARI ranges from -1 to 1, where a value of 1 indicates perfect agreement

between the two clusterings; a value of 0 suggests that the observed agreement is

no better than what would be expected by chance; a value less than -1 indicates

agreement that is worse than random chance.

𝐴𝑅𝐼 =
𝑅𝐼 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑅𝐼)

𝑚𝑎𝑥(𝑅𝐼)− 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑅𝐼)
(3.4)

where 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑅𝐼) is the expected value of the RI if the regions are randomly

segmented, calculated based on the distribution of the class sizes; 𝑚𝑎𝑥(𝑅𝐼) is the

maximum possible index value, representing the case of perfect agreement between

the segmentations.
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3.3 Search For Informative Spectral Bands

The workflow diagram provided in Figure 3-2 illustrates a process for selecting an

informative spectral band from the HSI using the 3D RGA. The first step in the

process is to choose a specific spectral band from HSI, which serves as a spectral

address of a seed, for testing the band’s ability to provide informative data about

the area of interest. The selected spectral band is then subjected to the 3D RGA

described in Section 3.1.

Once the algorithm completes its task, the segmented region is formed in the 3D

space, as depicted in the Figure 3-2, where the segmented area is shown in red against

the ground truth in white. The segmented 3D region is then mapped onto a two-

dimensional plane. This step is done to compare the segmented region with the 2D

ground truth of the datasets. The mapping creates a 2D binary mask by assigning a

value of one to a pixel if the pixel is segmented across any of the spectral bands. This

way the 3D segmented area is mirrored onto the spatial dimensions of the image.

The final stage of the process involves assessing the informativeness of the chosen

spectral band based on the segmentation accuracy. This is quantified using two

statistical measures: NMI and ARI. If both the NMI and ARI values exceed some

threshold when comparing the segmented 2D region to the ground truth of the seed

point, the spectral band is considered informative, indicating that it provides robust

data for precise segmentation. As indicated in Figure 3-2, this threshold is set at 75%.

However, for some classes, the NMI and ARI accuracy achieved across any spectral

bands may be lower. In such cases, the threshold is adjusted to three-fourths of the

maximum accuracy achieved across spectral bands. The three-fourths of maximum is

chosen as a threshold to keep a balance between precision and generability. If these

metrics do not meet the threshold, it implies that the spectral band is not informative

enough, prompting another cycle of spectral band selection.
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Figure 3-2: Workflow of spectral band selection process using 3D RGA.
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Chapter 4

Experiments and Results

This chapter explain the experimental setup, presents the results and discusses them

for each dataset employed. Each dataset provides a unique example, showcasing spe-

cific challenges and details that allow for a comprehensive evaluation of the effective-

ness and adaptability of the proposed methodology. Finally, the proposed approach

is compared with advanced methods to critically assess its performance relative to

current methodologies in the field.

4.1 Experimental Setup

In this section, we detail the experimental framework, describing the datasets used,

and how the final segmentation accuracy is achieved.

4.1.1 Datasets

Table 4.1 provides an overview of the datasets used in this sutdy. It includes key

characteristics of each dataset, such as the sensor used to capture the HSI, the wave-

length range and spectral resolution (in nanometers), spatial resolution (in meters),

and the number of classes contained within each dataset. The Salinas, Indian Pines,

and Pavia Centre datasets [106] are commonly employed for HSI segmentation tasks

and have been selected to verify the performance of the methodology against their
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ground truth. Meanwhile, the NERC-ARF dataset [107], an unlabeled dataset, is

used to evaluate the methodology’s applicability in real-world scenario.

Table 4.1: Summary of datasets

Dataset Shape Sensor Range
(nm)

Spectral
res. (nm)

Spatial res.
(m)

# of
classes

Salinas 512x217x224 AVIRIS 400-2500 10 3.7 16
Indian Pines 145x145x224 AVIRIS 400-2500 10 20 16
Pavia Centre 1096x715x102 ROSIS 430-860 4 1.3 9
NERC-ARF 4759x8496x622 AisaFENIX 380-2500 3.5 30 NaN

Salinas Dataset

The Salinas scene, a 512 by 217 pixel image, was taken over the Salinas Valley in the

USA in 1998 using the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS)

sensor [106]. Each pixel in this image represents a 3.7 square meter area. Initially,

the image included 224 spectral bands, but 20 of these bands were later removed due

to their redundancy. Specifically, bands associated with water absorption ([104–108],

[150–163], and 220) were excluded. The refined image comprises 16 classes that

include various stages of crops and vegetation, such as two types of Broccoli green

weeds, different states of Fallow land, Stubble, Celery, Grapes (both untrained and

in different development stages), Corn with senesced green weeds, Lettuce romaine

at four growth stages (4, 5, 6, and 7 weeks), and Vineyards (both untrained and with

a vertical trellis).

Indian Pines Dataset

The Indian Pines dataset, captured by the AVIRIS sensor over the Indian Pines test

site in North-western Indiana, USA in June 1992, consists of 224 spectral reflectance

bands [106]. After excluding bands associated with water absorption, 204 bands

within the 400 to 2500 nanometer wavelength range were retained. In the Indian

Pines area, agricultural land accounts for two-thirds of the terrain, while the rest is

covered by forests and various types of natural vegetation. The region is characterized
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by two significant dual-lane highways, a railroad track, and includes areas of sparse

residential buildings, additional man-made structures, and lesser thoroughfares. Cap-

tured during June, the image displays early growth phases of specific crops, such as

corn and soybeans, which occupy less than 5% of the land. The ground truth data is

divided into sixteen categories, which contains mixed categories.

Pavia Centre Dataset

The Pavia Centre scene was captured using the Reflective Optics System Imaging

Spectrometer (ROSIS) sensor during an aerial survey above Pavia in northern Italy

in 2002 [106]. The sensor collected hyperspectral data in the 430-860 nanometer range

of the visible and infrared spectrum, achieving a spatial resolution of 1.3 meters. It

represents the urban landscape of Pavia’s city center, characterized by densely packed

buildings, open spaces, and the Ticino river. Spatially, the width and height of the

image are 1096 and 715, respectively. Spectrally, it contains 102 bands. The ground

truth for the image identifies nine distinct classes. It includes materials such as bricks,

water, asphalt, bitumen, soil, tiles, among others.

NERC-ARF Dataset

The Natural Environment Research Council Airborne Research Facility (NERC-ARF)

supplied numerous HSI datasets from the Danum Valley in Malaysia, utilizing the

Specim Aisa FENIX imager [107]. The specific dataset used in this study is desig-

nated with the code "2014_288 - RG13_06 Flight," captured on 15 October 2014.

Currently, this dataset lacks ground truth. Among the sensors evaluated in this study,

the Aisa Fenix offers the widest spectral range, spanning from 380 to 2500 nanometer,

resulting in a total of 622 bands. To mitigate computational complexity, the spectral

bands were lowered to 207 through a resampling process that averages the data within

non-overlapping, fixed bins, each comprising three bands.

In addition to the spectral downsampling, the spatial dimensions were also re-

duced. Initially, the image was rotated by 20 degrees to correct for the aircraft

flight’s specifications, which caused the image lines to appear diagonal, as illustrated
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in Figure 4-1 (a). Subsequently, the image was cropped into ten smaller regions,

each with dimensions of 848 by 475 pixels. Only one of these regions, depicted in

Figure 4-1 (b), was utilized for further analysis.

Figure 4-1: NERC-ARF dataset.

4.1.2 Final Segmentation Process

During the experiments, it was observed that there typically is not just a single

informative spectral band but rather a range of them. This phenomenon can be

attributed to the high correlation among adjacent spectral bands. Consequently, final

segmentation accuracy is achieved by averaging the results across this informative

spectral range. This step is crucial for comparing the performance of the current

methodology with other state-of-the-art (SOTA) methods.

The initial step in averaging results across the spectral range involves selecting ten

equidistant spectral bands in the informative range corresponding to the class under

study. The number of bands is chosen to be ten as a good balance between covering

the entire spectral range of interest and maintaining a manageable dataset size. Then,

ten seeds, representing these ten spectral bands, initiate ten 3D regions that are later

mapped to a 2D space, as discussed in Section 3.3. Two methods are employed to

aggregate segmentation results across ten regions. In the first method, a pixel is

marked as segmented in the 2D array if it is included in the segmentation results of
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all ten regions (named as "All-regions consensus" method). In the second method, a

pixel is marked if it appears in the segmentation results of at least five regions (named

as "Majority-regions rule" method). This approach allows for smoothing the results

across ten regions. To evaluate the segmentation result, the final aggregated region

is compared with the class of the seed point, and accuracy is quantified by MNI and

ARI scores.

4.2 Salinas Dataset

Figure 4-2: 3D segments of Salinas dataset across various spectral bands.

Figure 4-2 provides a visual representation of the selection process for informative

spectral bands using the 3D RGA. This figure displays nine segmented regions gener-

ated by the 3D RGA using seed points across various spectral bands, specifically at

every 25th band interval. The seed point is selected from "broccoli_green_weeds_1"

class within the Salinas dataset and its spatial position is the same across segmen-

tations. Each sub-figure presents a gray-scale image of Salinas, a colored segmented

region, and ground truth of the class highlighted in white. From this figure, it is
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evident that the segmented regions with seeds at spectral bands 25, 50, 75, and 100

closely correspond to the actual class. This matching behavior is observed across spec-

tral bands from 20 to 100. In contrast, for the other bands, the segmented regions

cover the entire image, indicating an absence of class differentiation.

Table 4.3 offers a detailed overview of the segmentation results for the Salinas

dataset, achieved by using the most informative spectral bands. This analysis com-

prises of sixteen distinct classes that represent various types of vegetation. The

"Bands" column specifies the range of spectral bands identified as most informative

for segmenting each particular class through our methodology. The "Wavelength"

column provides the range of wavelengths (in nanometers) corresponding to the se-

lected bands. As datasets, with the exception of NERC-ARF, do not specify the

wavelength associated with each spectral band, the approximate wavelength is cal-

culated based on each dataset sensor’s wavelength range and its spectral resolution.

Additionally, this table presents the final NMI and ARI segmentation accuracy met-

rics for each class, employing two distinct aggregation strategies: the All-Regions

Consensus (ARC) and the Majority-Regions Rule (MRR).

Table 4.3: Segmentation results for Salinas dataset using most informative bands

All-regions consensus Majority-regions rule

# Class Bands Wavelength NMI ↑ ARI ↑ NMI ↑ ARI ↑

1 broccoli_green_weeds_1 20-100 578-1328 0.5904 0.7462 0.791 0.879
2 broccoli_green_weeds_2 20-35 578-719 0.8436 0.9272 0.8442 0.9198
3 Fallow 20-30 578-672 0.5465 0.7182 0.5818 0.733
4 Fallow_rough_plow 40-60 766-953 0.664 0.7972 0.7438 0.8397
5 Fallow_smooth 10-70 484-1047 0.8094 0.9038 0.791 0.8865
6 Stubble 15-35 531-719 0.758 0.881 0.7202 0.8539
7 Celery 10-40 484-766 0.7916 0.8994 0.8279 0.9101
8 Grapes_untrained 60-80 953-1141 0.4473 0.5905 0.4598 0.6007
9 Soil_vinyard_develop 40-60 766-953 0.781 0.892 0.8819 0.9484
10 Corn_senesced_green_weeds 40-60 766-953 0.3436 0.4524 0.7508 0.8652
11 Lettuce_romaine_4wk 10-70 484-1047 0.6441 0.774 0.7667 0.8745
12 Lettuce_romaine_5wk 40-70 766-1047 0.433 0.5928 0.7904 0.8775
13 Lettuce_romaine_6wk 35-60 719-953 0.5552 0.6709 0.7094 0.8245
14 Lettuce_romaine_7wk 25-35 625-719 0.5086 0.6684 0.4917 0.6404
15 Vinyard_untrained 65-85 1000-1188 0.6107 0.7403 0.9045 0.9632
16 Vinyard_vertical_trellis 5-35 438-719 0.7437 0.864 0.7929 0.8809

Average: 0.6537 0.7899 0.7463 0.8542
Joining all classes: 0.5763 0.4417 0.7719 0.706
SOTA [108]: 0.91 0.85
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Moreover, Table 4.3 presents average scores across classes, the scores obtained by

joining all classes, and the SOTA results from [108] to facilitate the comparison. The

inclusion of the accuracy for the joined classes addresses a gap in the literature, where

typically only the accuracy of whole scene mapping is reported. For example, Figure 4-

3 presents a visual comparison between the ground truth of the Salinas dataset and

our joined segmentation result. The joined result is achieved by first performing a

separate segmentation for each class, followed by merging these individual segments

into a single image. This figure demonstrates that a relatively simple algorithm,

such as the 3D RGA, can yield comparable results when applied to carefully chosen

spectral bands.

Figure 4-3: Segmentation results and ground truth of Salinas dataset

One point to note is that classes 4-8 (namely, "Fallow_rough_plow", "Fallow_

smooth", "Stubble", "Celery", "Grapes_untrained") consisted of two or three dis-

connected regions. Consequently, separate seed points from each sub-region were

selected, and segments from these sub-regions were combined to obtain a final result

for each class.

It should be noted that even though some classes fall under a single vegetation

group, they exhibit differences in their informative spectral bands. For instance,
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"broccoli_green_weeds_1" is segmented within the wavelength range of 578-1328

nanometers, achieving NMI of 0.791 and ARI of 0.879. The second type of Broccoli

green weeds is segmented within a narrower wavelength range of 578-719 nanometers,

achieving NMI of 0.8442 and ARI of 0.9198. However, when the first type is segmented

using the same spectral ranges as the second, both NMI and ARI scores decrease. A

similar pattern is observed for different types of Lettuce romaine. This observation

underscores the importance of selecting appropriate spectral bands for segmentation

within vegetation groups, as different classes, even within the same group, have unique

spectral characteristics.

Referring to Figure 1-1, another noteworthy observation is that the wavelength

range for most of the classes begins in the spectrum corresponding to green color

(starts from 520 nanometer), with the exception of "Vineyard_vertical_trellis" class.

"Broccoli_green_weeds_1" is the only class that extends into the middle infrared

spectrum, whereas the others are primarily within the near infrared, with a few

limited to the visible light spectrum ("broccoli_green_weeds_2", "Stubble", "Let-

tuce_romaine_7wk", "Vinyard_vertical_trellis"). This analysis highlights the di-

versity in spectral range usage among different vegetation classes.

Results across the classes showed variability in both NMI and ARI scores, re-

flecting differences in the segmentation performance related to the characteristics

of each class and the selected spectral bands. For instance, classes such as "broc-

coli_green_weeds_2" and "Vinyard_untrained" demonstrated high segmentation

accuracy, as evidenced by their respective NMI and ARI scores, particularly un-

der the MRR averaging strategy. Conversely, some classes, such as "Corn_senesced

_green_weeds," exhibited lower performance, underscoring the challenges in seg-

menting certain vegetation types.

The MRR generally outperforms the ARC strategy, as evidenced by higher average

NMI and ARI scores (0.7463 and 0.8542, respectively, compared to 0.6537 and 0.7899).

Specific classes, such as "Vinyard_untrained" and "Corn_senesced_green_weeds,"

demonstrate substantial improvement under the MRR compared to the ARC. It may

be due to the fact that ARC is equivalent to the AND logical operation across ten
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regions, thus, it reflects the smallest region. Segmentation in certain bands often

led to small regions, even though being in the informative band range (for example,

the third sub-figure in Figure 4-2), probably due to noise in spectral reflectance data.

Additionally, seed points located at the edges typically resulted in smaller than ground

truth regions compared to those in the center. Therefore, focusing on the majority

regions within each class led to a more accurate segmentation outcome.

While the average performance under the MRR approach shows competitive re-

sults (NMI: 0.7463, ARI: 0.8542), it falls short of the SOTA benchmark (NMI: 0.91,

ARI: 0.85) in terms of NMI. Yet it surpasses in ARI, indicating areas for potential

improvement and the effectiveness of this approach in certain contexts. However,

when we join all classes as one segmentation result, the SOTA performs better both

on NMI (0.91 compared to 0.7719) and ARI (0.85 vs. 0.706). It can explained by the

fact that the methodology is not devised to the whole scene mapping but to identify

a single region.

4.3 Indian Pines Dataset

Table 4.5 provides an overview of segmentation results obtained for the Indian Pines

dataset through the usage of the most informative spectral bands. Table’s structure is

the same as for the Salinas dataset. The analysis comprises of sixteen distinct classes

that represent various classes of vegetation and man-made structures.

Identifying informative spectral bands for the Indian Pines dataset presented chal-

lenges for two primary reasons. First, the majority of the classes, with the excep-

tion of classes "Alfalfa", "Corn", "Grass-pasture-mowed", "Hay-windrowed", "Oats",

"Wheat", and "Stone-Steel-Towers", were composed of multiple smaller subregions.

True classes can be seen from Figure 4-4. These smaller areas proved difficult to

accurately analyze, likely due to distortion from adjacent pixels. Additionally, these

subregions showed preferences for different spectral ranges, even within the same

class, complicating the task of identifying a single spectral range suitable for the en-

tire class. For instance, in the case of "Soybean-clean", distinct subregions showed
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Table 4.5: Segmentation results for Indian Pines dataset using most informative bands

All-regions consensus Majority-regions rule

# Class Bands Wavelength NMI ARI NMI ARI

1 Alfalfa 35-45 719-813 0.781 0.8678 0.0081 0.0054
2 Corn-notill 25-45 625-813 0.062 0.1776 0.0032 -0.0109
3 Corn-mintill 55-57 906-925 0.3256 0.4687 0.0187 -0.043
4 Corn 22-36 597-728 0.2401 0.2959 0.3509 0.4293
5 Grass-pasture 20-70 578-1047 0.2832 0.4747 0.0082 -0.0292
6 Grass-trees 30-40 672-766 0.179 0.2491 0.0508 -0.0077
7 Grass-pasture-mowed 35-45 719-813 0.7322 0.8247 0.0022 -0.0006
8 Hay-windrowed 118-138 1544-1731 0.5958 0.7118 0.2303 0.2848
9 Oats 30-50 672-859 0.5042 0.6308 0.0022 0.0004
10 Soybean-notill 39-49 756-850 0.1702 0.3538 0.0493 -0.0309
11 Soybean-mintill 30-40 672-766 0.3007 0.5028 0.0002 -0.0019
12 Soybean-clean 10-50 484-859 0.431 0.5709 0.0088 -0.025
13 Wheat 35-39 719-756 0.8108 0.9015 0.8764 0.9412
14 Woods 25-35 625-719 0.3712 0.5677 0.2616 0.2972
15 Buildings-Grass-Trees-Drives 20-25 578-625 0.6086 0.7516 0.5738 0.7115
16 Stone-Steel-Towers 2-25 409-625 0.722 0.835 0.755 0.8583

Average: 0.4841 0.6233 0.1981 0.1549
Joining all classes: 0.4069 0.3347 0.2676 0.0068
SOTA [109]: 0.517 0.283

optimal performance with different sets of spectral bands: (13-17, 38-50) for one,

(23-35, 40-62) for another, and (10-28) for a third. Secondly, the presence of mixed

classes within the Indian Pines dataset indicates that the spectral signatures do not

exclusively represent a single category, further complicating the segmentation process.

It is especially the case for classes such as "Grass-trees", "Grass-pasture", "Woods".

Figure 4-4: Segmentation results and ground truth of Indian Pines dataset

The Indian Pines image has a lower spatial resolution (20 meters per pixel) com-
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pared to the Salinas (3.7 meters per pixel), meaning each pixel in the Indian Pines

dataset covers a larger area on the ground than each pixel in the Salinas dataset.

Lower resolution means less detail and can lead to a greater challenge in identifying

small land cover patches, which also may explain lower segmentation accuracy than

for Salinas on all metrics. It also can be a reason for the Indian Pines’ significantly

poorer performance using the MRR method in comparison to ARC.

Another critical observation from the table is the variability in segmentation effec-

tiveness across different classes and aggregation methods, similar to Salinas’ results.

For instance, the "Wheat" class shows remarkably high scores under both averag-

ing strategies, with NMI and ARI reaching up to 0.8108 and 0.9015, respectively,

under ARC, and even higher under MRR. Conversely, classes like "Corn-notill" and

"Soybean-notill" exhibit significantly lower effectiveness, with negative ARI scores

under the MRR, indicating a lack of consensus between segmentation results and

ground truth.

The average scores across all classes are moderate, with an NMI of 0.4841 and an

ARI of 0.6233 under ARC, dropping significantly under the MRR. When joining all

classes, the effectiveness decreases further, especially notable in the ARI under the

MRR, decreasing to 0.0068. However, ARI scores under ARC surpasses the SOTA

benchmark score of 0.283 [109] demonstrating potential for improvement.

4.4 Pavia Centre Dataset

Table 4.7 provides a comprehensive overview of segmentation results obtained for the

Pavia Centre dataset through the usage of the most informative spectral bands. The

analysis comprises of nine distinct classes that represent various classes of urban and

natural landscapes.

The SOTA benchmark [108] for NMI and ARI significantly surpasses the results

achieved in this study. Similar to the Indian Pines dataset, all classes in the Pavia

Centre, except for "Water," consist of small, disjoint subregions. Figure 4-5 shows

ground truth of "Trees", "Tiles", and "Meadows" classes highlighted in white. Despite
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Table 4.7: Segmentation results for Pavia Centre dataset using most informative
bands

All-regions consensus Majority-regions rule

# Class Bands Wavelength NMI ARI NMI ARI

1 Water 4-102 443-856 0.7294 0.8451 0.4854 0.5874
2 Trees 0-70 430-721 0.0532 0.1433 0.0307 0.0768
3 Asphalt 25-50 531-637 0.1139 0.2328 0.0635 0.1256
4 Self-Blocking Bricks 35-75 573-742 0.2424 0.3966 0.2966 0.4699
5 Bitumen 52-102 645-856 0.1846 0.3057 0.2286 0.4106
6 Tiles 8-48 460-628 0.076 0.1535 0.0483 0.0914
7 Shadows 82-102 772-856 0.4312 0.6046 0.397 0.5937
8 Meadows 0-45 430-616 0.015 0.0222 0.0725 0.139
9 Bare Soil 0-80 430-763 0.0434 0.1217 0.0434 0.1217

Average: 0.2099 0.3139 0.1851 0.2907
SOTA [108]: 0.91 0.97

the high spatial resolution of Pavia Centre (1.3 meters), the subregions are too small

for meaningful segmentation, probably due to interference from pixels of neighbouring

classes. Furthermore, the high number of subregions makes it even more challenging

to select seed points from each subregion.

Figure 4-5: Ground truth of Pavia Dataset.

Certain classes that are more uniform, such as "Water" and "Self-Blocking Bricks",

showed relatively high segmentation effectiveness, with NMI and ARI scores indicat-

ing a strong agreement between the segmentation results and the ground truth. On

the other hand, classes such as "Trees" and "Meadows" with many disjoint subre-

gions exhibited low NMI and ARI scores, highlighting the challenges in accurately

segmenting these classes. Thus, it can be concluded that the proposed methodology’s
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limitation lies in its reliance on datasets featuring larger, more homogeneous regions.

Another potential reason for the poor accuracy observed with the Pavia Centre is

the wavelength range it captures, which is almost 5 times narrower than that of other

datasets used in this study. It primarily captures visible light and a small portion

of near-infrared light (430-860 nanometers). 10 out of the 16 classes in the Salinas

dataset and 3 out of the 16 in the Indian Pines dataset contain spectral information

beyond 860 nanometers. Therefore, it can be suggested that some critical information

might be contained in wavelengths beyond what the Pavia Centre captures.

4.5 NERC-ARF Dataset

As the NERC-ARF dataset does not have ground truth, analysis required additional

steps. Spatial positions of 140 seed points were chosen at the intersection of the

grids in Figure 4-1 (b). Every third band was chosen as spectral position for the

every spatial positions of the seed. After running the 3D RGA for each arranged

seed point, we obtained 9800 binary mask arrays of segmentation. These images were

further clustered using Mean-Shift Clustering (MSC).

MSC is widely used in tasks related to computer vision, such as image seg-

mentation, to classify pixels into regions according to their color and proximity in

space [110]. This process includes placing a kernel on every data point, finding the

average of points within the kernel, and moving the kernel toward the average point.

The approach is iterative and does not require any prior information about the num-

ber of clusters, as the algorithm can determine the number of clusters based on the

data.

MSC initially produced 21 segmentation clusters. After merging similar clusters,

the total was reduced to 18. Figure 4-6 displays representative images from each

cluster, with segmented regions shown in white. For instance, Cluster 1 features seg-

mentation across the entire image, whereas Cluster 18 has a segmented region so small

it is barely noticeable, containing only 31 pixels out of 87500 at maximum. In Clus-

ters 3, 4, and 5, all areas except for rivers are segmented. The segmentation outcome
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also varies depending on the seed point’s location relative to the river; specifically,

whether it’s on the river’s right or left side. For example, in Clusters 8 and 16, the

segmentation extends across the entire region up to the river.

Figure 4-6: Clusters obtained for NERC-ARF dataset.

Table 4.9: Segmentation results for NERC-ARF dataset

Bands Segmentation results Comments

0-14 Cluster 1 No unique information, whole image segmented
15-29 Clusters 1, 2, 3, 4, 6, 8, 11
30-39 Clusters 1, 2, 3, 4, 6, 8, 9, 11, 12, 16, 17 Contains some local regions
40-64 Clusters 1, 2, 3, 4, 8, 11, 12, 13, 15 Contains some local regions
65-104 Cluster 18 Regions are too small to be visible, the largest region con-

tains 31 pixels out of 87500
105-114 Clusters 4, 5, 6, 7, 8, 10, 14, 15, 16, 17 Contains some local regions
115-139 Clusters 1, 14, 18 Rich for local regions
140-149 Cluster 1 No unique information, whole image segmented
150-164 Clusters 1, 3, 4, 6, 8, 16 Contains some local regions
165-207 Cluster 1 No unique information, whole image segmented

An examination of how clusters are distributed across spectral bands has led to

some insights regarding the informativeness of these bands. Table 4.9 presents a sum-

mary of these findings. Bands ranging from 0-14, 140-149, and 165-207 are deemed

uninformative, as segmentation across the entire image in these bands suggests a lack

of unique information. Conversely, bands 65-104 exclusively contain Cluster 18, indi-

cating information that may not be generalizable. Bands 30-39, 40-64, and 105-114

show the most diversified segmentation, suggesting they could potentially contain
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useful information. Furthermore, bands 115-139 reveal interesting results, featuring

local regions that, while not as small as those in Cluster 18, are smaller than those in

other clusters. Figure 4-7 shows examples of some of those regions at bands 115-139.

This pattern might imply that these bands capture specific features with a localized

impact, distinct enough to be segmented.

Figure 4-7: Local regions obtained at bands 115-139 for NERC-ARF dataset.

4.6 Comparison With State-Of-The-Arts

To evaluate if selected bands enhance segmentation outcomes compared to other

dimensionality reduction techniques, segmentation of the Salinas image using MSC

is conducted. Each execution of MSC starts with a randomly chosen initial mean,

causing variability in the final outcomes. To obtain stable NMI and ARI scores, 10

trials are conducted. Although the seed of the random function varies across trials,

it remains consistent within each experiment.

For these experiments, MSC is applied to the original image, to spectral features

extracted by PCA and CAE, and to spectral bands selected within the range pro-

posed by the method. PCA is carried out using a function from the Spectral library

in Python [111]. For the CAE, 1D convolutions are employed to reduce the spectral
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dimension only, as outlined in prior work [112]. The architecture of the 1D CAE

comprises an encoder-decoder network, each featuring four convolutional layers fol-

lowed by max pooling and leaky ReLU activations. Regarding the selected bands,

the minimum and maximum bands determined for the Salinas dataset are utilized,

thus reducing the image to bands 5-100.

Table 4.11 summarizes the experimental results using the NMI score. On average,

NMI accuracy stands at 47.27% with original image. This accuracy decreases by 13%

with the use of CAE. The scores slightly improve by 0.07% with the selected bands,

though the improvement is more notable with PCA, at 0.13%.

Table 4.11: NMI of segmentation with different dimensionality reduction methods

NMI score The difference from NMI of original image

trial Original image PCA-reduced image CAE-reduced image Bands [5-100]

1 42.24% 1.53% -8.50% 1.64%
2 48.63% 0.24% -15.31% 1.11%
3 43.63% 0.25% -8.58% -0.57%
4 49.22% -0.07% -15.51% 0.11%
5 51.75% 0.31% -17.49% -0.50%
6 51.46% 0.16% -15.85% 0.05%
7 41.71% 0.65% -9.05% -0.04%
8 43.10% -1.02% -8.27% -1.60%
9 49.09% -0.23% -16.09% 0.86%
10 51.88% -0.50% -16.08% -0.37%

Average: 47.27% 0.13% -13.07% 0.07%

Similarly, Table 4.12 presents ARI scores for the same experiments. When using

images reduced by CAE, the clustering results decrease by 18.75%. For PCA, there

is an improvement of 0.54%, while the use of selected bands results in an even better

improvement of 0.98%.

The experiments demonstrate the importance of choosing the right dimensional-

ity reduction technique. While CAE is a powerful tool for feature extraction and

dimensionality reduction in many contexts, its application here suggests that not all

information critical for segmentation is retained through its process. On the other

hand, simpler methods like PCA or even manual selection of bands based on the

proposed method can provide better segmentation outcomes.
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Table 4.12: ARI of segmentation with different dimensionality reduction methods

ARI score The difference from ARI of original image

trial Original image PCA-reduced image CAE-reduced image Bands [5-100]

1 10.57% 1.17% -4.43% 7.37%
2 40.45% 0.53% -28.63% 0.33%
3 9.95% 4.25% -0.15% 6.68%
4 40.61% -0.09% -29.40% -0.22%
5 39.55% -0.11% -32.53% -0.69%
6 39.67% -0.27% -30.53% -0.20%
7 10.92% 0.93% 0.57% -0.13%
8 11.45% -0.67% -2.92% -2.81%
9 40.81% -0.44% -29.52% -0.40%
10 39.63% 0.14% -29.93% -0.16%

Average: 28.36% 0.54% -18.75% 0.98%

4.7 Depth Analysis

Figure 4-8: Depth of 3D segmented regions from Salinas dataset.

The process of projecting a segmented region from 3D space to a 2D array is

achieved through a simple mirroring technique. However, examining the shape of

the 3D regions suggests that the depth of these regions may also convey important

information. For instance, as illustrated in Figure 4-8, two seed points located in

different spectral bands but within the same class in the Salinas dataset can result

in regions with significantly different depths: one with a depth of 20 (a) and another

with a depth of 1 (b). Seeds originate from the "Lettuce_romaine_4wk" class, and

thus, their informative bands fall within the range of 10-70. Consequently, a region

that begins from a seed point within the spectral band of 31 leads to a deeper region

compared to a seed with a spectral address outside of this class’s informative bands.

Additionally, a heatmap has been constructed for the NERC-ARF dataset, where
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each pixel represents the frequency of segmented spectral bands. Figure 4-9 illustrates

that pink areas in the original image are segmented more frequently than other re-

gions, with approximately 20 or more out of 207 spectral bands corresponding to these

areas. It may suggest that the pink areas likely have a distinctive spectral signature

that makes them stand out from the rest of the landscape. This distinctiveness could

be due to specific characteristics of the surface that reflect light differently compared

to surrounding areas. Therefore, future work could consider examining the impact of

depth and developing an improved 3D-to-2D mapping procedure.

Figure 4-9: Depth of a 3D segmented region in NERC-ARF dataset.
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Chapter 5

Conclusion

The thesis introduced a novel method that employs a 3D RGA for the effective band

selection, with the goal of enhancing segmentation accuracy in HSI data. Unlike

conventional band selection methods that focus on statistically distinct bands, this

approach utilizes a heuristic search for the most informative bands, considering both

spatial and spectral information. Furthermore, the method’s unique stopping crite-

rion, based on the intensity of the seed pixel, enables flexible and precise control over

the segmentation process.

Our experiments across various datasets, including Salinas, Indian Pines, Pavia

Centre, and NERC-ARF, showcased the capability of our approach in achieving com-

petitive segmentation accuracy. The experiments indicated that, typically, there is

not just one informative spectral band; instead, a range of bands was identified as

significant. The segmentation accuracy, assessed using NMI and ARI, varied across

different classes within the same dataset, highlighting differences in spectral character-

istics of each region. Moreover, we noted variations in informative wavelength ranges,

classes covering different segments of electromagnetic spectrum. Additionally, it was

observed that even within the similar vegetation groups, classes could have differing

informative spectral bands. Our methodology proved useful in analyzing unlabeled

HSI datasets, as evidenced by the results with the NERC-ARF dataset.

However, the methodology has limitations, particularly as its performance de-

creases in cases where a class is composed of disjointed, small regions. This condition
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complicates the selection of seeds for each region and may introduce noise due to

spectral signatures being disrupted by surrounding pixels. Additionally, the method’s

effectiveness depends on the spatial and spectral resolution of the captured image,

with higher resolutions being preferable. Finally, integrating separate regions into a

single image led to performance that fell below the SOTA across all datasets. This

outcome likely stems from the method not being intended for scene segmentation.

By comparing our method against SOTA approaches, it became clear that while

there are areas for improvement — particularly in handling datasets with smaller,

less homogeneous regions — our methodology still offers a competitive advantage

in certain situations. Therefore, future work could aim to refine the methodology

further by automating the selection of seed points to better manage small, disjointed

regions. Additionally, future research could explore assessing the impact of depth in

3D regions and developing an improved procedure for mapping from 3D to 2D.
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