
Qazaq Sign Language. Bridging Communication
Barriers

*This is a Senior Project on Qazaq Sign Language translation

1st Maksat Faizuldanov, Kamila Arslanova, Bekzhan Bolat, Zhansultan Assemzhar, Daniyal Bayanov
Dept. Computer Science, Nazarbayev University, Astana, Kazakhstan

maksat.faizuldanov@nu.edu.kz, kamila.arslanova@nu.edu.kz, bekzhan.bolat@nu.edu.kz,
zhansultan.assemzhar@nu.edu.kz, daniyal.bayanov@nu.edu.kz

Abstract—The project is aimed to address the issue of com-
munication barriers encountered by individuals with hearing
disabilities, given the scarcity of resources in sign language
for people in Kazakhstan. The project tackles the issue by
developing a web application that provides the translation of
spoken language (Kazakh, English, and Russian) to Kazakh-
Russian signed language. The project aims to facilitate acces-
sibility and communication of the dead community by utilizing
Language Technology, specifically the Sign Language Synthesis,
Sign Language Translation, and Natural Language Processing.
Additionally, the web application expands educational opportu-
nities of the individuals with hearing disabilities by providing a
book library, which could be also translated to sign language.

Index Terms—sign language, sign language translation, natural
language processing, Kazakh signed language, hearing disabilities

I. INTRODUCTION

According to the World Health Organization [11], more than
5% of the population has hearing loss. The major issue this
leads to is the disconnectedness of the people with hearing
disabilities with the rest of the world, since it poses a signifi-
cant obstacle to information sharing - it becomes challenging
to perceive information between individuals. Today, there are
only two ways of communication between the hearing people,
and deaf community – text and sign language. The fact that
the vast majority of hearing people do not have any experience
in sign language exacerbates the issue even more, as written
language could be difficult to comprehend for deaf people
[3]. Additionally, it causes further adverse effects such as the
challenge of limited opportunities in education since the vast
majority of educational and scientific resources are typically
presented in written form.

Nevertheless, today the issue of deaf community disconnect-
edness can be tackled by Language Technology, a field related
to the computational analysis of human languages. The aim of
The Sign Language Synthesis and Sign Language Translation
areas in this field is the translation of the natural language to
sign language [1]. Our project’s purpose is to include these
areas to counter the obstacles posed to the community of
people with hearing disabilities by means of developing a
web application that is based on generating animations of
sign language translation from spoken language (text). In our
project, the Sozder [8] database is used, which consists of

words and links them to short videos and their translation in
sign language.

Our project is aimed at solving the problem of the commu-
nication barrier between the hearing and deaf communities,
while also expanding the educational opportunities for people
with hearing disabilities. The project addresses both issues, as
it allows the user to translate textual spoken language to sign
language. Additionally, the web application provides a library
of books which facilitates deaf people to read, since the books
can also be translated into sign language word by word.

The first section of this report includes background infor-
mation and previous research done over the topic. The next
section discusses how we approach to solve the problem,
which tools we used and general structure of the web applica-
tion’s components. After that, we describe how the project was
actually implemented and which problems we encountered
during the work. Lastly, we evaluate the project based on the
results of the user testing.

II. BACKGROUND AND RELATED WORK

Sign Language Processing is the area in Language Technol-
ogy, which is a field of the computational processing of human
languages. The Sign Language Synthesis and Sign Language
Translation areas of this discipline together aim to translate
natural language to a sign language [1]. The research related
to use of technology for translating spoken language to sign
language dates back to recent years. The area is relatively
new, and started developing in the last decade [5]. There
exist several papers on this topic, covering both sign language
recognition and generation.

In Kazakhstan, one of the projects that involves information
technology in the area of sign language is a sign language
recognition project that uses a neural network. The project
was developed by a faculty member of Eurasian National
University, and its goal is to help people to learn sign language
and prepare future interpreters. The sign language generation
from spoken language is a future plan of this application
[2]. Another contribution by Kazakhstani researchers is the
datasets for Kazakh Sign language, which will be discussed
later.

Our inspections over the available literature showed that
sign language generation has not been addressed yet in Kaza-



khstan comprehensively. For our work, we rely on several
previous works done to develop our own system of sign
language generation as below:

A. Sign.mt [4]

Sign.mt is an open-source project that functions as a transla-
tion from spoken language into sign language and vice versa.
It is implemented as a website which allows users to translate
text input to a video. The website includes various spoken and
signed languages, such as German, English and some others,
but does not cover Kazakh sign language. As for our project,
we will use this work as a reference to implement a similar
idea, but for Kazakh sign language.

B. “Sozder” video collection [8]

The Sozder video collection is a dictionary dataset which
contains translation of words to sign language by categories. It
contains translations for 1570 words in Kazakh and Russian.
The video materials will be converted into .POSE files to be
used later in our translation service.

C. Pose-Format library [6]

The pose-format is a Python library developed by Moryossef
et al. It was developed with the purpose to contribute to
the development of Sign Language Processing and provides
tools to work with poses in .pose format. This library uses
Mediapipe to estimate body positions from a video. For our
project, the library allows us to convert an mp4 video to the
.pose file, which contains such information as the pose points,
their positions and connections between points. The resulting
.pose file can then be converted into a video animation.
This approach enables the anonymization of sign language
interpreters. By using this library, we convert the videos in
the Sozder collection into a database of corresponding .pose
files.

D. Gloss-Based Pipeline for Spoken to Signed Language
Translation [7]

This work represents a pipeline of translation from spoken
language to sign language: text-gloss-pose-video. It relies on
the Pose-Format library discussed above and includes German,
French, and Italian sign languages, converting the grammar
structure of sentences in spoken language to glosses, for each
of which a corresponding .pose file is selected. The output
of this pipeline is the sequence of .pose files (representing
words in a sentence) that are concatenated smoothly and can
be converted into a video. In the case of our project, we use
this work to implement normalization and concatenation of
poses that we previously generated from interpreter’s videos
in the Sozder database.

E. Kazakh Sign Language Datasets

With the perspective of future work, more comprehensive
video databases are available for now in Kazakh Sign Lan-
guage and can be used. First one is KRSL-OnlineSchool:
Large Vocabulary Kazakh-Russian Sign Language Dataset [9],
which is based on recording of 890 hours of video material

from El-arna TV’s sign language-interpreted lessons. The
dataset includes translations by 7 interpreters with annotations
for approximately 300 hours of video, and transcriptions for
4,009 out of 4,547 lessons using automatic speech-to-text
software.

Another dataset is covered in paper done by Mukushev et.al.
[10] with 28250 videos. The work focuses on distinguishing
similar signs in Kazakh-Russian Sign Language (K-RSL)
based on non-manual components. The study assesses the
impact of non-manual features, such as question signs.

F. Video Generation Models

There are several papers focusing on image and video gen-
eration models for sign languages. Some methods include the
Style-Based Generator Architecture for Generative Adversarial
Networks, Variational Diffusion Models, High-Resolution Im-
age Synthesis with Latent Diffusion Models, High Definition
Video Generation with Diffusion Models, and High-Resolution
Video Synthesis with Latent Diffusion Models [5].

Other work related to stylized sign language generation is
done by Yu et al. [12], which provides a holistic motion dataset
and benchmark for 3D animated sign avatars.

III. PROJECT APPROACH

A. Web Application Fuctionality

Our solution to the problem of communication barrier is the
web application that lets you translate the spoken language
text for any of Kazakh, English, and Russian language to the
Kazakh (Qazaq) Sign Language [further QSL]. For translation
purposes, our own translation service API has been developed.
User of website is allowed to:

1) Dynamically enter the text into the input box and get
real time translation to QSL.

2) Trigger the translate function by clicking on specific
words within the content of the book to read it in QSL.
Real-time translation to QSL of the clicked word also
occurs.

3) View the translation of the interface elements by hover-
ing on the certain element.

4) All processes above lead to the display of a GIF file
containing a stick figure demonstrating signs.

5) To register and log in, leading to the functionality of
adding the books in their own library (“My books”
section).

a) Opportunity to save progress and read the added
book from the last read page.

B. High-level Structure

The general architecture of our system is Model-View-
Controller as shown below on Figure 1.

Our project could be divided into 3 major parts, as shown
on Figure 2:

• Front-End (JavaScript, ReactJS, CSS, Tailwind CSS,
NPM)



Fig. 1. MVC Architecture of the Website

Fig. 2. General Structure of the System

• Back-End (Python, Django, Django REST, SQLite3) for
book reading progress keeping and managing user ac-
counts

• Our own translation service API consists of a few mi-
croservices (Python, JavaScript, NodeJS, Flask, FastAPI).

• In addition, we implemented a service outside of the
system to convert all videos in the Sozder database to
.pose files that are uploaded to the translation service
(which is a part of the website).

C. Detailed description of architectural components

1) Front-End: Front-End part focused on developing five
different pages, which are named “Home”, “Translate”,
“Books”, “Help”, “About us”.

• “Home” is the first page that users will see. It will help
them to navigate throughout the web application.

• “Translate” is the page where users can input their texts
and receive an output in the form of an animated sign
language translation.

• “Books” is the section where users can choose and read
a book by translating certain words in real time and

Fig. 3. Component-based structure representation.

view the result in the form of the animated stick figure
demonstrating signs.

• “Guide” includes guidelines which users can utilize to
understand how the system works.

• “About us” page gives users information about the
project, its mission and the team behind its development.

For front-end development, the decision was made to uti-
lize JavaScript’s React library and adopt a component-based
architecture. Additionally, to enhance the UI/UX experience,
Tailwind CSS has been incorporated for styling the web
application. Given the component-based nature of our project,
the components can be described as follows:

The figure 3 briefly describes the structure of the component
based architecture. To be precise, it might be noted that
there are 8 main “parent” components that have few child
components under them, as described in the figure. To discuss
the complex ones:

• Auth. Component created to handle user log in, registra-
tion, log out processes. If the user is logged in, then there
is the rendering of the Logout component.

• Translate. The component developed to dynamically
accept the input in textarea and translate it. TranslateInput
child component is responsible for handling the interac-
tion of users and sending requests to the back-end server
and our own developed translation service API endpoint.

• Books. Most complex page that consists of parent and
many children components with conditional rendering.
Since our library displays the books for Foreign Litera-
ture, Kazakh Literature, and conditionally MyBooks, we
have separate components for each of them.

– To handle the displaying of a lot of books, a Book-
Card component was implemented. By passing the
array of objects, we could achieve the rendering of
the same book cards with different information.

– The read button of the book card triggers the render
of the BookRead component. That component lets
the user view and read the full content (text) of the
book in a separate box.

– Meanwhile, if the user is logged in at the moment
of clicking the read button, then the book’s addition



Fig. 4. Architecture diagram of back-end auth process

to the user’s books section is triggered.
∗ Firstly, the book is checked to appear or not in the

user’s database to avoid duplicates (CheckBook).
∗ If the book is not present in the user’s books

database, then it is assigned to the certain user.
The AssignBook component is responsible for that
function.

– In the BookRead component, during the reading, if
the user clicks the word, then the real-time transla-
tion of the word is triggered, that lets us translate the
book. (TranslateBook component).

– After leaving the read page, if the user is logged in,
then the data about the progress, specifically the last
read page of the user is passed to the ‘MyBooks’
section. Later users will be able to read the book
from the last read page, letting them to avoid the
loss of the progress.

• About Us. The page was implemented to tell the users
about our mission. The page is mostly static, therefore
contains 4 child components that are responsible for the
information provided.

– Welcome – responsible for welcoming users and pro-
viding information about the mission of the project.

– Team and TeamMember – components to display
the team members as the names state. TeamMember
is the component that handles displaying the same
structured cards with different information about
team members.

• Other components are not as complex as the ones men-
tioned above. Mostly, they are static components that
display static information.

• HoverGif. Special and different component that is im-
plemented independently. Its main goal is to display the
sign language translation GIF file for each of the interface
elements when that certain element is hovered by the
user’s mouse.

2) Book Storage and Account Management service: For
the backend part we used Django Rest Framework of Python
programming language, and for storing the user information
and all about books such as content, progress etc. we used
SQLite3.

• User authorization works using a token, for example,
if the user has already logged into the site (a token is
created) and simply closed it, then it is saved for a certain
time. The token is deleted after the time has expired or
if the user decides to log out.

Fig. 5. Architecture diagram of books database interaction

Fig. 6. Workflow diagram of word to infinite form conversion service.

• Saving the user’s book reading progress occurs as fol-
lows: when the application is launched for the first time,
all books are inserted into the database and each user’s
progress is created for each book. When the front is
launched and the user opens the book, the progress of
reading the book is sent to the backend.

3) Convert-to-infinitive service : The service was built
using NodeJS and deployed to be used as an API.

• The service handles a request with an input (word)
• Due to having both Russian and Kazakh words in our

words-videos database, the input is translated to Russian,
or kept in Kazakh. The translation and language recog-
nition is done by Google Cloud Translation API.

• It was also necessary to convert words into their base
forms (infinitives), in order to find them in the database.
The word conversion to their bases is done using Google
Cloud Natural Language API

• Lastly, the server searches the converted and translated
words in the database, as a response, the the found
word proceeds further as shown in the figure of overall
architecture of the web application

4) Convert text to pose service:
• Conversion of interpreter-recorded videos to pose files

(separate from website)
To begin implementing a service of generating animation
of the sign language translation from text, we first needed
to convert videos in the Sozder database to pose files.



Therefore, we developed a service to implement this task
(the service is separate from the website). It performs:

– extraction of video names to corresponding transla-
tions in the Excel file from Sozder database (Excel
coordinate of a word in Kazakh or Russian corre-
sponds to its video name) and populating a CSV
file that is further used for lookup by the translation
service

– converting the videos into corresponding files in
Pose format with the use of Pose-Format library
for Python. After this procedure, the pose files and
populated CSV were uploaded to the Text-to-pose
translation service.

• Text-to-Pose conversion service As the pose files for
all words were ready, we implemented the service that
translates text to a pose file. The service was developed as
a Flask application with the use of Gloss-Based Pipeline
for Spoken to Signed Language Translation (discussed in
section 3) and deployed on Google Cloud. The workflow
of this service is the following:

– It accepts a request with the text from Convert-to-
infinitive service, in which words are already in the
base infinitive form and are in Kazakh / Russian
language as they are defined in the Sozder database,
such that they can be found in the CSV file.

– Then, the service uses Gloss-Based Pipeline to per-
form the following tasks:
∗ Lookup in the CSV a mapping of a word to its

corresponding .pose file.
∗ After the words are found, their poses are ap-

pended to a list of .pose files.
∗ Once the last word in the string input is processed

and its pose file is appended to the list, the stream
of pose files is concatenated into a single .pose
file that encodes body pose vertice positions for
the whole input string.

∗ Since the database of the .pose files was obtained
from different videos of different formats, sizes
(vertical, horizontal, far, close, etc.) the body part
positions and scale in each of them are different.
Therefore, we used the gloss-based pipeline to
normalize, trim, smooth concatenated poses, cor-
rect the wrists, and scale poses to produce the final
output.

– If some word is not in the database, the .pose file
with meaning “no translation” is returned

The structure of the text-pose conversion service is shown
on Figure 7.

5) Convert pose to GIF service: As the tool for interactions
with translation API, our team developed a microservice using
the FastAPI library of the python programming language. Its
workflow is:

• To accept the request from front-end side.
• To send a request containing the accepted body from the

front-end to the convert-to-infinitive service.

Fig. 7. Convert-text-to-pose service structure

Fig. 8. Use case diagram

• To accept the response and send the further request to the
convert-text-to-pose service.

• To accept the response containing .pose file.
• Using pose format library to visualize the accepted pose

file and draw gif file.
• Finally give an answer to the front-end side depending

on the status of the response received from translation
service api.

The Figure 8 shows the use case diagram for the system.

IV. PROJECT EXECUTION

A. Front-end

1) Issues:
• The Nuxt.js modules’ not compatibility.
• Nuxt.js modules’ dependencies’ installment issue.
• Nuxt.js server’s frequent interrupting.
• Sending requests by using AXIOS to the necessary APIs

and endpoints.
• Handling logic of functionality and their structure.
• Creating responsive UI.
• Taking dynamic inputs to translate.
• Translating user interface to QSL to make it more usable

for deaf people, who are not familiar with letters.
2) How were the issues resolved:
• Transferring the project and re-implementing the front-

end using the React library has enabled us to address
issues related to module resolution and server interrup-
tions.

• Avoiding Axios and focusing on the use of Fetch.



• Practicing a component-based architecture involves striv-
ing to incorporate minimal functionality within each
component and breaking down tasks into smaller, more
manageable units.

• Incorporating responsive units such as rem and em,
along with increased utilization of Tailwind CSS, has
significantly enhanced the responsiveness of our web
application.

• Utilizing promises, debounce, and timeouts enables us to
pause for half a second to one second after input insertion,
effectively managing the entered input.

• By implementing the HoverGif component and encapsu-
lating all interface elements, we’ve enabled the function-
ality to display animated QSLs of specific elements upon
hover.

B. Back-end

1) Issues:
• Due to the reason that the front-end part used Nuxt.js,

we had problems with connecting it to the back-end in
Django.

• User’s book progress worked but it was not correct that
it saves only the very first user’s progress.

2) How were the issues resolved:
• Prisma is used as the back-end part of Nuxt.js because it

was more suitable and had no problems such as Django
connection.

• SQLite3 used instead of PostgreSQL database tool be-
cause in Django it’s already automatically generated.

• We found that progress fields were created in the unique
id format of the user and fixed it by removing the unique
parameter.

C. Machine learning model construction

1) Issues:
• At the beginning of the entire project, we thought that we

would create and train a machine learning model based
on the sign.mt project, but it turns out that the creators
of this site did not use any machine learning model.

• It turned out to be very difficult for us to create a machine
learning model from scratch without instructions, since
no member of the group had ever done this.

2) How were the issues resolved:
• We decided to do without a machine learning model

and use the created database “sozder”, that is, search
for words there and, if found, take short videos of these
words.

• Then, with the help of several services, we turned these
videos of words into gifs and combined them into one
big gif, which resulted in smooth gif animations.

D. Convert-to-infinitive service

1) Issues:
• Kazakh language is not supported in the Google Cloud

Natural Language API

• No other services available to process Kazakh text
• Deployment problems - tried Heroku, Google Cloud

deploy platforms
2) How were the issues resolved:
• Kazakh language processing was implemented manually,

by taking the endings out, and leaving the basic forms of
the words - stemming

• The service was later deployed on cyclic.sh hosting
platform

E. Text-To-Pose-To-Gif converting service

1) Issues and Resolutions: The initial implementation of
the service was that a Flask application would output not just
a pose file but a GIF. However, it was changed due to the
following reason:

• We encountered a problem with deployment that was
persisting due to the large size of the service:

– The database of poses consists of around 1500 files,
resulting in a total more than a gigabyte. Many
hostings that we tried to use had memory limitations.

– When requirements are installed, they take several
gigabytes of memory as well.

• We managed to deploy the project on Google Cloud since
it did not have memory constraints.

• After that, the service seemed to be working, since it was
accepting requests from the intermediate API, however,
it did not provide the output.

• After inspecting the logs, it turned out that the generation
of the GIF file took too long after the resulting pose file
was ready, and then the service stopped generating itself.
Possibly, due to low resource allocation.

• Therefore, we decided to output not a GIF file but a pose
because it would be faster. So we changed the service
to output just a pose file, which will be handled later by
the intermediate API to generate the GIF with animated
translation to sign language.

However, even with these refinements, the response time
of the pose generating service was slow (about 10 seconds)
on the hosting, while it was instant on a local machine. In
addition to the time to generate a GIF file from pose (which
also takes around 10-15 seconds for a single word) the total
waiting time from sending a text request results in almost half
a minute.

We believe that these issues can be resolved once the whole
web application is deployed on a server with adequate resource
allocation.

V. EVALUATION

A. User Testing Organization

To evaluate the effectiveness of our system after the imple-
mentation, we conducted user test studies. For the user test we
invited five subjects who were deaf adults, two male and three
female. The results of this evaluation offer valuable insights
into the accessibility and usability of our digital platform for
this community.



Fig. 9. User test with a deaf person. From left to right (test subject 1, Kamila
Arslanova, Maksat Faizuldanov, interpreter 1, and interpreter 2)

The testing place was chosen to be “Balam-ai”, which is a
rehabilitation center for adults and children with special needs.
The image below is the process of user testing of subject 1.

B. Tester 1 Results

There were important notes taken from the criticism of the
Tester 1 with respect to the Qazaq Sign Dialect (QSL) website.
Tester 1 communicated disappointment with low flexibility in
the movements of the translating stick figure. They recom-
mended using smoother movements between concatenations of
translated signs. Moreover, they highlighted the need to utilize
human-like interpreters instead of an animated stick figure,
for better understanding. Another proposal was to include
a “translation” button. Moreover, Tester 1 pointed out that
the accessible dataset of translated signs was incomplete. For
example, within the “Books” page of the site, there was no
sign for the word “she sewed”. Additionally, they advocated
for a larger avatar size on the main page as it was hard to
understand the given animations by the stick figure.

C. Tester 2 Results

The second subject of the test gave a recommendation to
make the preparation of the sign translation to be instant rather
than having to wait several minutes. Also, they emphasized
that hand movements of a stick figure should be more expres-
sive, or even look like a human. Moreover, they wanted the
translator on the main page of the website to appear larger
than it was given to them, so that it is clear what is being
shown to them.

D. Tester 3 Results

The next tester also shared concerns about the long delays
in the preparation of translations of words into signs. The
new piece of feedback apart from the comments of previous
subjects, is that there might be dialects in gestures that we did
not consider. They suggested that to avoid misunderstandings

Fig. 10. Tester (on the left) and interpreter (on the right) discussing the
implemented system

in the translation, there should also be a translation of the
desired word in the context of a sentence. Similar to the
previous test subjects, he wanted the stick figure to be more
human-like.

E. Tester 4 Results

Tester number four provided us with valuable feedback
such as the need of providing more detailed explanations
for different interpretations of the translated sign words. This
subject also suggested improving the smoothness of gestures
given by the translator avatar. Furthermore, she would like
to have sequential representation of signs of a word within a
particular sentence, rather than only one word.

F. Tester 5 Results

The last test subject highlighted the importance of correcting
mistakes in the translation of some words throughout the
website. Moreover, they recommended using larger texts and
animations for better comprehension of the information by the
deaf users as it may be ambiguous for some people.

G. Feedback Analysis

Overall, the testers provided valuable feedback on the
usability of our implemented system. The most frequent
suggestions were to improve the efficiency of the translation
process, enhance the smoothness of gestures, change the stick
figure to be more human, and refine the visual elements of
the website. Additionally, there was a consistent preference
for clearer translations with additional explanations apart from
pure translations. Although the suggestions to change the
functionalities of the website were prevalent, there were also
appreciative comments on some design and usability features.
These include color scheme, icons, appearance of the translat-
ing stick figure on word hover, and structure of the site.



VI. CONCLUSION AND FUTURE WORK

In conclusion, our team has developed the planned web
application or service to address the issue of communication
barriers within society. Throughout the implementation pro-
cess, we prioritized creating a user-friendly UI and integrating
our own Qazaq sign language real-time translation service.

However, during evaluation our users met the challenges and
expressed their feelings, providing us with valuable feedback
that were discussed above. To resolve these challenges, the
development team in the future should:

• Note the specific translation methods of interpreters that
provide us with a data set.

• Try to replace the stick figure with a human-like avatar,
since the emotions and feeling expressions have signifi-
cance in the translation.

• Optimize the translation service and try to speed-up the
time of getting the result.

• Provide a definition of an unknown word, rather than just
a translation.

• Make adjustments to the UX/UI design to represent states
of waiting, success or unsuccess in translation.

• Implement a feedback feature such that users could
evaluate the translation and suggest their own versions.

Moreover, there is a possibility of improving the project by
combining the web application with other teams’ works. For
example, as our advisors suggested, the web service could be
combined with a sign language recognition project of another
team. Such a decision would lead to increase in the usability
of the product.

REFERENCES

[1] European Language Equality (ELE). D1.40: Report on Europe’s Sign
Languages, 2023. Accessed: September 6, 2023.

[2] Forbes Kazakhstan. Kazakhstanskiy Uchenyi Razrabotala Sistemu
Raspoznavaniya Kazakhskogo Jestovogo Yazyika, July 2023. Accessed:
July 31, 2023.

[3] C. McKeown and J. McKeown. Accessibility in online courses:
Understanding the deaf learner. TechTrends, 63(5):506–513, 2019.

[4] A. Moryossef. sign.mt: Effortless Real-Time Sign Language Translation,
2023.

[5] A. Moryossef and Y. Goldberg. Sign Language Processing, 2021.
[6] A. Moryossef, M. Müller, and R. Fahrni. pose-format: Library for

viewing, augmenting, and handling .pose files. GitHub, 2021.
[7] A. Moryossef, M. Müller, A. Göhring, Z. Jiang, Y. Goldberg, and

S. Ebling. An open-source gloss-based baseline for spoken to signed
language translation. In 2nd International Workshop on Automatic
Translation for Signed and Spoken Languages (AT4SSL), June 2023.
Available at: https://arxiv.org/abs/2305.17714.

[8] M. Mukushev. Sozder [video file]. Retrieved from
https://drive.google.com/drive/folders/1s97j4AGIrVl65uNRc9uJiZybK9tMM5GG,
2023.

[9] M. Mukushev, A. Kydyrbekova, V. Kimmelman, and A. Sandygulova.
KRSL-OnlineSchool: Large Vocabulary Kazakh-Russian Sign Language
Dataset. Retrieved from https://krslproject.github.io/online-school/,
2022.

[10] M. Mukushev, A. Sabyrov, A. Imashev, K. Koishybay, V. Kimmelman,
and A. Sandygulova. Evaluation of manual and non-manual components
for sign language recognition. In Proceedings of The 12th Language
Resources and Evaluation Conference, pages 6075–6080, Marseille,
France, 2020. European Language Resources Association.

[11] World Health Organization. Deafness and hearing loss, February 2023.
[12] Z. Yu, S. Huang, Y. Cheng, and T. Birdal. SignAvatars: A Large-scale 3D

Sign Language Holistic Motion Dataset and Benchmark. arXiv preprint
arXiv:2310.20436, 2023.


