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Abstract

This thesis proposes a methodology for dealing with nonlinear financial derivative
models using the finite element method (FEM). Financial engineering solutions are in
high demand to mimic realistic market scenarios. Significantly, the nonlinear partial
differential equations (PDE) seen in security pricing theory make it almost impossible
to develop explicit solutions. Therefore, one resorts to numerical approximations. The
literature contains articles dealing with nonlinear contracts using the finite difference
method (FDM), which practitioners frequently use. This thesis aims to provide some
computational gain in time and an accurate solution to nonlinear contracts in the
derivative market. The generality of the approach is extendable to other types of
American and European nonlinear contracts.

For nonlinear models, conventional FEM and Isogeometric analysis (IGA) are de-
signed to be compared with benchmark results. The second-order P2-FEM performs
better convergence properties than FDM and P1-FEM for convertible bond models.
Moreover, the incorporation of an adaptive grid leads to the use of a few spatial
discretizations.

Usually, PDE models seen in financial engineering consist of convection-dominated
or degenerate terms. The naive approach relies on stabilization techniques, as they
allow for mitigating spurious oscillations. Alternatively, we use a relatively new ap-
proach, demonstrated by IGA-NURBS-based finite element technology, where the
monotonic convergence is achieved with uniform and non-uniform grids without any
stabilization techniques and validated within the benchmark region. Numerical ex-
periments were conducted among well-known conventional FEM and FDM methods.
The presence of the IGA framework has showcased the classical results by using fit-
ted curve approximation. IGA demonstrates notable results based on the linear case,
where the exact solution was achieved using a lesser number of grids than those by
FEM and/or FDM.

The post-processing Greek values are essential, as is the price of the contracts. The
literature on computing the Greek values by FDM or finite volume methods (FVM) is



vast. Specific models that consider frictionless markets may encounter challenges in
accurately representing real-world scenarios. To satisfy the request of the derivative
market, one shall consider the nonlinear pricing models that incorporate the specific
request seen in financial derivative markets. The use of standard FDM or/and FEM
leads to instability in the post-processing Greeks. In principle, a possible mitigation of
such oscillations could be resolved using stabilization techniques. Employing NURBS
basis functions with high compact support offers smoother Greek values, which may
contribute to more reliable investment and trading strategies for hedging purposes.
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Абстракт

Бұл диссертация соңғы элементтер әдiсiн (FEM) қолданатын сызықтық емес
қаржылық туынды модельдермен жұмыс iстеу әдiстемесiн ұсынады. Қаржылық
инженерия шешiмдерi нарықтың шынайы сценарийлерiне қайталау үшiн жоғары
сұранысқа ие. Маңыздысы, бағалы қағаздардың баға теориясында көрiнетiн
сызықты емес iшiнара дифференциалдық теңдеулер (PDE) айқын шешiмдердi
әзiрлеудi қиындатады. Сондықтан сандық жуықтауларға жүгiнедi. Әдебиетте
практиктер жиi қолданатын шектi айырмашылықтар әдiсiн (FDM) қолданатын
сызықтық емес келiсiмдерге қатысты мақалалар бар. Бұл дипломдық жұмыс
уақытында белгiлi бiр есептеу табысын және туынды нарықтағы сызықтық емес
келiсiм-шарттардың дәл шешiмiн қамтамасыз етуге бағытталған. Әдiстiң мәнi
американдық және еуропалық сызықтық емес келiсiмшарттардың басқа түрлерiне
де қолдануға қолайлы.

Сызықты емес модельдер үшiн әдеттегi FEM және изогеометриялық талдау
(IGA) эталондық нәтижелермен салыстыруға арналған. Екiншi реттi P2-FEM
конвергенциялық қасиеттердi айырбасталатын байланыс үлгiлерi үшiн FDM және
P1-FEM-ге қарағанда жақсырақ орындайды. Сонымен қатар, адаптивтi торды
енгiзу бiрнеше кеңiстiктiк дискретизацияларды қолдануға әкеледi.

Әдетте, қаржылық инженерияда көрiнетiн PDE үлгiлерi конвекция басым
немесе азғындалған мүшелерден тұрады. Аңғал тәсiл тұрақтандыру әдiстерiне
сүйенедi, өйткенi олар жалған тербелiстердi азайтуға мүмкiндiк бередi. Балама
ретiнде бiз IGA-NURBS негiзiндегi соңғы элементтер технологиясы арқылы орын
алған салыстырмалы түрде жаңа тәсiлдi қолданамыз, мұнда монотонды шешiмге
жету ешқандай тұрақтандыру әдiстерiнсiз бiркелкi және бiркелкi емес торлармен
қол жеткiзiлдi және эталондық аймақта расталады. Сандық тәжiрибелер белгiлi
дәстүрлi FEM және FDM әдiстерiнiң арасында жүргiзiлдi. IGA құрылымының
болуы бекiтiлген қисық жуықтауды қолдану арқылы классикалық нәтижелердi
көрсеттi. IGA сызықтық жағдайға негiзделген елеулi нәтижелердi көрсетедi,
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мұнда нақты шешiм FEM және/немесе FDM-мен салыстырғанда торлардың аздау
саны арқылы қол жеткiзiлдi.

Келiсiмшарттардың бағасы сияқты өңдеуден кейiнгi грек мәндерi өте маңызды.
Грек мәндерiн FDM немесе соңғы көлемдi әдiстермен (FVM) есептеу туралы
әдебиетте өте кең таралған. Үйкелiссiз нарықтарды қарастыратын арнайы үлгiлер
нақты әлемдегi сценарийлердi дәл көрсетуде қиындықтарға тап болуы мүмкiн.
Туынды нарықтың сұранысын қанағаттандыру үшiн туынды қаржы нарығында
байқалатын нақты сұранысты қамтитын сызықтық емес баға модельдерiн қарау
қажет. Стандартты FDM немесе/және FEM пайдалану кейiнгi өңдеу гректерiнде
тұрақсыздыққа әкеледi. Негiзiнде мұндай тербелiстердiң ықтимал жұмсартылуын
тұрақтандыру әдiстерiн қолдану арқылы шешуге болады. Жоғары ықшам қолдауы
бар NURBS негiзгi функцияларын пайдалану хеджирлеу мақсаттары үшiн сенiмдi
инвестициялық және сауда стратегияларына ықпал етуi мүмкiн бiркелкi грек
құндылықтарын ұсынады.
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Chapter 1

Introduction

1.1 Historical background

The revolutionary contribution to Financial Mathematics that the dynamic of fair
option price follows stochastic processes was first reported by the mathematician
Louis Bachelier in his doctoral thesis in 1900 Bachelier (1900) under the supervision of
Henri Poincaré. The idea of this work was the incorporation of the Brownian Motion
Brown (1828) into option price dynamics; indeed, underlying stock price theoretically
follows the same behavior as a random movement of pollen grains of a plant in liquid.
Five years after Bachelier’s work, Albert Einstein Einstein (1905) proposed to use the
same Brownian motion theory for modeling the movement of small particles. The
theory of Bachelier has a counterpart as a negative value of the underlying assets,
which, in reality, is mostly unlikely to happen. The work of Louis Bachelier was the
driving model theory in Financial mathematics until 1973, when Fischer Black and
Myron Scholes Black and Scholes (1973), published their groundbreaking work known
today is the Black-Scholes model.

Derivative pricing theory is divided into two eras. The first work was done by
Bachelier, but its negativity property inherited from arithmetic Brownian motion
was evolved by the Black-Scholes-Merton (BSM) model, where they used geometric
Brownian motion. We refer to BS as the original work and model by Black and Scholes
in Black and Scholes (1973). The use of the Bachelier model nowadays has arisen
again due to the crisis in 2008 with negative interest rate values in the market Choi
et al. (2022). The recent COVID-19 collapse in the world with a historically low level
of oil demand caused a negative price. Due to these facts, the original BS model has
too restrictive an assumption the interest rate or stock prices( e.g. they follow the
lognormal distribution), therefore, the model could not essentially fit some market
requirements. Moreover, the BS model cannot deal with negative prices, unlike the
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Bachelier model. Nevertheless, the BS model has given rise to several generations of
researchers who have successfully applied the idea of the BS model in mathematical
finance directions. Scientific and industrial communities have been applying these
financial instruments in areas such as derivative pricing theory, operational research,
real options, decision-making, and management strategies.

According to the financial market evaluation reports, as of 2022, the stock market
in the world is $109 trillion, whereas the derivatives market costs about $20 trillion.
The financial derivative market requires deep quantitative analysis and investment
strategies worldwide every day.

1.2 Literature review

Quantitative finance is a huge branch of financial mathematics, and pricing deriva-
tives is one of its main interests. The real-life advantage of quantitative finance
can not be imagined without derivative pricing theory, which deals with stochastic
differential equations (SDE), partial differential equations (PDE), and numerical sim-
ulations. The fair price of the derivative deduced from either a SDE or a PDE is a
key information for financial institutions in terms of risk management and contract
price evolution, as it can be utilized for trading strategies. Throughout this work,
we have suggested several finite element frameworks for nonlinear derivative pricing
theory in the context of American and European style contracts. There are two main
approaches to defining the fair price of the derivative:

• PDE approach using Black Scholes based models Black and Scholes (1973).

• The martingale approach, which considers certain assumptions and the fair
price, can be defined via expected value Harrison and Pliska (1981).

These two approaches are connected via the Feynman-Kac theorem Oosterlee and
Grzelak (2019). However, this dissertation focuses on developing numerical tech-
niques for PDEs based on the BS model. Particularly, we focus on European and
American derivatives. A European option is a type of contract where the holder of
the option can exercise only at maturity time, whereas American contract can be
exercised during the whole contract life before the expiration date. One of the break-
through inventions for PDE simulations for the variety of BS type problems was
suggested by the group of Peter Forsyth in a series of papers, specifically in Forsyth
et al. (1999); Forsyth and Vetzal (2002). The established methodology is widespread
among the scientific and industrial community of numerical methods for BS type of
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PDEs. Essentially, the PDEs in option pricing theory suffers from being convection
dominated in the original form, however, this phenomenon can be handled by stabi-
lization techniques from several decades ago at 1980s. The presence of the convection
dominance nature makes the PDE unstable and more likely to produce spurious os-
cillations Forsyth et al. (1999), especially in the range where the gradient is strong by
given initial data. In the context of the finite difference method (FDM), this kind of
issue is handled by an upwinding scheme, which controls the flow on the convection
term. However, the Finite Volume Method (FVM) is more natural to capture spuri-
ous oscillation as it allows them to describe the non-smooth initial data Forsyth et al.
(1999). One should pay attention to the fact that the original Black Scholes PDE has
variable coefficients on diffusion and convection terms, which makes it difficult to con-
trol the Peclet number throughout the space domain. However, this problem can be
treated by subdividing into local and global domains, which entails more control over
varying Peclet numbers. However, as in Zvan et al. (1999), this problem is treated by
using FVM with the modified convective term, which incorporates the usage of Van-
leer flux limiters paired with Rannacher start-in-time integration scheme. Note that
flux limiters are introducing nonlinearity into PDE. However, this hybrid and brutal
force approach guarantees the monotonic convergence to the solution using relatively
fewer degrees of freedom (DOF). Moreover, it allows for mitigating the spurious os-
cillation that might be caused by a higher Peclet number. Finally, this approach is
applied to the original PDE without using any change of variables, therefore, it is
a tedious scheme from implementation point of view, as the scheme constructed by
FVM and flux limiter needs to be adapted to each particular problem, especially with
multidimensional problems. Not that this approach secures a high-resolution scheme,
being accurate up to 6-8 decimal place precision Forsyth and Vetzal (2002).

In the context of Finite Element Method (FEM), as in Kozpınar et al. (2020), the
discontinuous Galerkin method can effectively deal with convection dominant prob-
lems. Another approach is to use Cottrell et al. (2009) Streamline Upwinding Petrov
Galerkin (SUPG) method to alleviate the spurious oscillations by modifying the weak
formulation according to the specific task. However, this kind of problem can always
be handled by the above-mentioned approaches. However, some research groups re-
sort to transformation techniques that convert the variable coefficients into constant
ones. Nevertheless, this transformation is exact, and the newly transformed problem
will have an exact transition between the original and the transformed, which answers
the question of whether the numerical results are inconsistent after the transforma-
tion. The transformation can not avoid the nature of the problem being convection
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dominant; it only simplifies the existence of local Peclet numbers into global ones.
Therefore, during the refinement process, one could spend more effort to capture
the areas where the gradient is stronger. After the transformation, the only region
where the problem can be faced is piecewise continuous or even discontinuous grids
in initial data for our purpose. One of the widely used is the Landau transformation
Zhu and Zhang (2011), which originates from fluid mechanics and all other methods
involved in BS type of problems. Stabilization techniques were first introduced for
continuum and structural or fluid mechanics. Stabilization techniques preserve high-
resolution schemes or mitigate spurious oscillations Forsyth et al. (1999). However,
the commonality is that those validated techniques are suited to financial problems.

Equally important, the numerical technique that is widely used and serves as a
robust and fast technique is FDM. In general, FDM is a powerful technique compared
to many other complicated methods, such as FEM or FVM, because of its simplicity
and efficiency. However, it is plagued by the inability to handle some complicated
geometries or nonlinear terms faced in PDEs. Moreover, the error analysis from
the FDM perspective is hard to achieve for nonlinear models, while FEM suggests
a richer arsenal to deal with different complicated models. Considering that the
fundamental results of FEM are grounded in appropriate Hilbert and Sobolev spaces,
which provide a broader architecture for addressing various issues, it’s worth noting
that, in practice, the challenges encountered in the financial sector are comparatively
less intricate due to the simplicity of the geometry than those encountered in the
field of engineering Cottrell et al. (2009). However, FDM is successfully applied to
many nonlinear problems, showing a competitive result by modifying the scheme
using nonlinear smooth mapping functions for a non-uniform grid Christara and Wu
(2022). In FEM, the treatment of some nonlinearities are not straightforward as in
FDM, therefore, wide range of financial derivative solutions are available in FDM
context. The literature on FDM is vast and rich; however, the research is still active
in using FDM for financial problems, where they utilize more complicated schemes
such as adaptive mesh or non-uniform grids.

Up to this point, we covered a literature review consistent with this thesis’s
scope. However, some exotic numerical techniques are rarely used numerical tech-
niques which use the B-spline collocation method for pricing the option Christara
and Leung (2016) for jump-diffusion models as well as B-spline wavelets Ortiz-Gracia
and Oosterlee (2013). The spectral method is Zhu and Kopriva (2009) used for Eu-
ropean options, yielding superior results to benchmark FDM solutions. Radial basis
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functions are used for the jump-diffusion model Cont et al. (2011). The review pa-
per Saedi and Tularam (2018) provides a recent account on methodologies for option
pricing under the Black-Scholes equation, such as the R3C scheme Ankudinova and
Ehrhardt (2008), cubic spline wavelets and multiwavelet bases methods Černá and
Fiňková (2024), FDM Dremkova and Ehrhardt (2011), FVM Forsyth and Vetzal
(2002), and FEM Forsyth et al. (1999); Barone-Adesi et al. (2003); de Frutos (2005);
Kovalov and Linetsky (2008). Another series of papers on the integral equation ap-
proach, which is defined in Fourier space, was produced by Zhu et al. (2018). As it
was concluded, by comparing all other methods, FEM was the choice because of its
convergence and mesh adaptivity opportunity.

These paragraphs serve as a concise literature review on some numerical methods
for Black Scholes problems and motivation for applying the IGA for financial deriva-
tives Posṕı̌sil and Šv́ıgler (2018); Christara and Leung (2016); Mohammadi (2015).
However, one could say that there have been relatively limited research papers pub-
lished by FEM, particularly by IGA no papers for European or American nonlinear
models.

1.3 Aim of this work

In the spirit of the gap in the literature and IGA’s privilege, this thesis aims to pro-
vide a fundamental framework using IGA for European and American type nonlinear
contracts, which, to the best of the author’s knowledge, remains unexplored in the
literature. A financial derivative is a contract containing two or more sides who are
allowed to buy or sell this contract within a specified period and under specific reg-
ulations. Nowadays, the trend involves more than one risk factor, making the PDE
approach less efficient as the several risk factors are presented as a multidimensional
problem. It is well-known that once the dimension is higher than three in PDE,
the computational cost to obtain a satisfactory solution is extremely high. There-
fore, nowadays, the martingale approach Harrison and Pliska (1981) for finding the
expected value of SDEs is more efficient for dealing with multifactor pricing prob-
lems Oosterlee and Grzelak (2019). Financially, it makes good sense to be capable
of working with multifactor risk sources. Especially in option pricing problems, the
portfolio content can vary depending on different types of instruments such as deriva-
tives, stocks, commodities, features, swaps, etc. However, the ability to calculate the
expected value of derivative price out of these factors is promising a serious structure
to control, hedge, and rebalance the portfolio for better trading strategies. Famous
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methodologies to deal with SDEs are Monte-Carlo or Fourier based approach and
Euler-Maruyama scheme for asset integration, however, the research in this direction,
involves a usage of Deep Learning to deal with multidimensional problems, which is
presented as forward or backward SDEs Andersson et al. (2023). Nevertheless, many
specific tasks in quantitative finance require a few risk factors, and it is still efficient
to be solved by the PDE approach, which suggests a richer roaster of tools that can
deal with up to three dimensions quite effectively and accurately than those by SDE
models.

As was described in Section 1.2, the majority of the numerical methods in the
derivative pricing area are FDM and FVM. There are relatively less number of FEM
papers that discusses derivative pricing problems. Moreover, to the author’s knowl-
edge, IGA was not applied for nonlinear American and European contracts. Our pro-
posed methodology is to handle the nonlinear problems using variational methods,
such as FEM and Isogeometric Analysis (IGA). As FEM suggests, there is a wealth
of theoretical and practical modifications that can deal with nonlinearity and convec-
tion dominance situations that are common in financial engineering. Depending on
the specific problem, the methods vary to capture the models’ nontrivial difficulties.
For our purpose, we employ an IGA with NURBS, capable of effectively handling se-
lected models, with the potential for extension to other issues commonly encountered
in European or American style derivatives.

In the first part of this thesis, we introduce a hybrid of group FEM Fletcher (1983)
with the system of PDEs, which involves a penalty term that is formulated from a
Linear Complementarity Problem (LCP). Together with this spatial discretization, we
use a modified Crank-Nicolson scheme for time integration. Moreover, the Newton-
Raphson iterative method for non-smooth function is utilized at each time step to
deal with nonlinearity coming from penalty terms. The second part introduces a
more sophisticated IGA for nonlinear American and European contracts. IGA is a
technique Cottrell et al. (2009) which falls into the FEM family as it involves the
variational methods with different test functions compared to those by conventional
FEM with Lagrangian polynomials. Specific techniques that do not have counterparts
in conventional FEM are applied for different problems, suggesting a promising result.

1.4 Financial derivative models

Financially, there has been a rise in the usage of CBs in Europe in the past several
years, as banking institutions are forced to suggest higher interest rates. This stimu-
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lated the people to invest money into CBs as they offered lower interest rates but a
safe environment for their activities. Therefore, the demand for CBs was raised again
in Europe, however, after the financial crisis in 2008, the demand for CBs in China’s
derivative market went suddenly up as investors could save the money in CBs rather
than traditional financial institutions. It is worth noting that the CBs are an old
and specific type of derivatives that require advanced analytics before making any
investments. Over the decades, the CB contracts in real life Jan De Spiegeleer (2014)
have become more challenging and difficult to control the risks without puttability
constraints. One could say that CBs are suggesting a stable investment vehicle, but it
is plagued by being less effective from a profit point of view. Therefore, investments
in CBs require a first round of investment to be a notable amount of money to get a
prompt profit in a short window. Therefore, these are notable cons of CBs compared
to traditional derivatives such as options or swaps, which suggest more risk but cor-
respondingly more profit. Another motivation to study the CBs is that the literature
is not saturated by CBs investigations, what one can not say about options. To fill
this gap, we aim to study some CB models’ fair prices and suggest relatively better
techniques to overcome the gap.

Throughout the thesis work, we present the three main problems that, to the
best of the author’s knowledge, remained unexplored using FEM. Firstly, the Leland
Leland (1985) model describes the impact of transaction costs when one exercises the
derivatives. In previous work Wei et al. (2024), a European call option with transac-
tion costs was handled using P1-P2 FEM, suggesting a comparable and stable solution
for specific spatial-temporal grid choices. From a mathematical point of view, the Le-
land model in the PDE approach is a challenging task due to its strong nonlinearity
created by diffusion terms. The stability of these kinds of strong diffusion terms is well
posed in certain parameter settings. Therefore, the parameters need to be calibrated
to avoid blow-up solutions and avoid falling into the range of ill-posed problems. Nev-
ertheless, we consider both cases to show how different methodologies deal with it.
A very important quantity in investigating the fair price is post-processing Greeks,
which gives priceless information about the model’s behavior according to each vari-
able in the model. For a strongly nonlinear problem, the smooth Greeks are likely
to be non-smooth or have shocks and spikes. However, this is of great importance,
as those nonlinear models suggests real life benefits, therefore accurate Greeks are
crucial and advantageous for practitioners. To remedy this issue, we have adapted
the IGA with NURBS, which performs significantly better than other conventional
methods.
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The second problem is the Tsiveriotis and Fernandes (TF) model for pricing the
convertible bonds Tsiveriotis (1998). A convertible bond is a financial derivative that
allows the holder to convert it into the underlying asset during its lifetime. Indeed, CB
is a complicated financial instrument that allows to manage the risk from above and
below by controlling the asset price behavior. It belongs to the sort of American style
derivatives, which is supposed to be described as LCP Forsyth and Vetzal (2002). Key
constraints, such as callability, puttability and conversion constraints are the driving
inequalities that must be imposed at each time step, either explicitly or implicitly. The
literature on TF model is not vast, as it is more common in industrial software vendors.
England’s company called FINCAD&Numerix, and a French company called ITO33,
are active users of this model and other models. Initially, we were inspired to suggest
a better numerical method than standard FDM. The CBs are involving versatile
parameters that are strongly connected within a parametric setting, therefore, it
suggests a challenging task to implement them correctly from implementation point of
view. Especially, the key constraints, which are only natural for CBs, have an impact
on a solution which is computed at each time step. This makes the problem more
sophisticated, as those parameters will beneficially change the penalized matrices
during the Newton-Raphson iteration method. Therefore, computational time for
this particular problem requires a huge amount of time when we use the fine grid in
time and space.

The last considered problem is Ayache, Forsyth and Vetzal (AFV) model which
has significantly improved the TF model as it was demonstrated to be inconsistent
with default strategies of underlying assets. Incorporating partial and default cases
has resulted in a new AFV model, which is actively used for convertible bond tasks
worldwide, especially by ITO33 in France. This model is presented as a system of
triple PDEs that has to be solved simultaneously at each time step, involving the
Newton-Raphson method for the same penalty terms discussed for the TF model.
We do provide a detailed comparison of different methods applied to this model,
such as FDM, FEM and IGA. This model is convection dominated in its nature,
as certain parameter configurations according to CB properties make this problem
difficult to control in the numerical sense. However, an approach to overcome these
nuances is presented in the following sections. Note that, for academic purposes,
many key properties of CBs are shortlisted for the sake of simplicity and validation.
Nevertheless, those properties can always be incorporated into the model properly
once the fundamental model is performed by a numerical method in a satisfactory
way.
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1.5 Contributions

The notable results and improvements are highlighted in the following, which may
deserve the reader’s attention:

• P2-FEM is successfully applied to the TF model, resulting in better results than
the traditional FDM benchmark problem using reduced grid points.

• Corresponding Greeks are computed taking advantage of P2-FEM, which re-
sulted in the obtained explicit formula.

• P2-FEM Greeks are compared favorably with FDM Greeks for the TF model.

• The group FEM is applied for nonlinear terms under P1-P2-FEM and IGA
NURBS as well.

• It was the first instance when IGA-NURBS was applied to nonlinear European
and American contracts, suggesting an extendable structured methodology to
other nonlinear problems.

• A fundamental framework for treating nonlinear European and American con-
tracts is presented under IGA-NURBS.

• AFV model is solved accurately with monotonic convergence where the result
falls into the benchmark range.

• Fitted NURBS results, where the weights are calibrated according to closed
form or reference solution, has performed exceptional results both for the linear
and nonlinear model, using a few grids to obtain a noteworthy similar result.

• A full-stage post-processing algorithm for computing the Greeks under IGA-
NURBS is also presented. IGA-NURBS performs promising Greek solutions
with previously obtained P2-FEM Greeks.

• Nonlinear Leland model is solved by IGA-NURBS precisely comparing to refer-
ence solution by P1-P2-FEM showing stability for a certain choice of time-space
grid sizes.

• The Greeks from the Leland model by IGA-NURBS have outperformed the P2-
FEM results. P2-FEM produces an oscillation in second-order Gamma Greek,
while IGA-NURBS produces smooth Greeks throughout the whole surface.
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1.6 Outline

In chapter 1, the introduction is carried out by considering the notable works and
discussions of viable important moments that motivated us to make these investiga-
tions. In chapter 2, we have considered detailed information about the methodology
and some numerical algorithms to demonstrate the fundamental aspects. Then, we
provide the main results based on the European call option with transaction costs dis-
cussed in chapter 3. The TF model for pricing the convertible bonds by P1-P2-FEM
is presented in chapter 4. Finally, the AFV model, which incorporates the default
strategy, is solved by IGA-NURBS in chapter 5.
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Chapter 2

FEM for Black-Scholes equations

2.1 European call option

In financial engineering, an option is a contract that gives the holder the right, not
obligation, to trade (buy or sell) an asset (e.g. such as stock prices, swaps, futures,
interest rates, foreign exchange rates, or commodity prices, etc.) at a predetermined
strike price. The performance of the contract then depends on underlying assets.
If the option can only be exercised at the expiry date, then it is called a European
option Higham (2004). If the option can be exercised at any time, then it is called an
American option Higham (2004). A call option gives a right but not an obligation to
buy the underlying asset at a predetermined price, while a put option gives a right
but not an obligation to sell the asset. In this section, we shall consider the European
call option by FEM. We shall describe the underlying asset’s behavior, which follows
the Geometric Brownian Motion (GBM) Hull (2014). In this case, the underlying
asset price can be written as a stochastic differential equation:

dS(t) = µS(t)dt+ σS(t)dW (t) with S(t0) = S0,

where S(t) is the stock price dynamic (normally distributed random variable) with
N (0, 1), µ is the drift parameter, σ is the volatility, and W is the Brownian motion.
Therefore, the stochastic integral which handles the above SDE can be written as
follows:

S(t) = S0 +

∫ t

t0

µS(ẑ)dẑ +

∫ t

t0

σS(ẑ)dW (ẑ)

where ẑ is time variable. For illustration purposes, we have simulated the above
SDE for two different stocks to observe their stochastic behavior. In particular, we
consider a call option. In Figure 2.1, the blue stock at the time T is higher than
the red one, initially the strike price is $150. Therefore it is reasonable to buy this

11



Figure 2.1: Two different stock price behaviors over the time [to, T ]

stock because one can sell it promptly in the market for $250, making the pay-off
max(S − K, 0) = $100. The option becomes valueless in the red labeled asset, as
S(T ) < K. Hence, there is no need to exercise the right to call.

2.1.1 Derivation of the Black-Scholes PDE

This section serves to derive the BS PDE and analytical solutions. The celebrated BS
PDE is a most famous model in financial engineering, where the authors Black and
Scholes (1973) have used the idea that the underlying stock price follows the GBM.
Moreover, they assume that the concept of replicating the portfolio is to obtain the
Black-Scholes. They follow the dynamic Delta hedge by updating the portfolio at
each time step. Stochastic process S(t) is

dS(t) = µS(t)dt+ σS(t)dW (t).

V (S, t) is the price of European option. Then by means of Ito’s lemma Ito (1951),
one could come up with the following SDE:

dV (t, S) =
∂V

∂t
dt+

∂V

∂S
dS +

1

2

∂2V

∂S2
( dS)2

=

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW.
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Now, we construct a portfolio that consists of a one long position option V and a
short position in ∆ number of shares of S:

Π(S, t) = V (S, t)−∆S(t).

By Ito’s lemma, the change in the portfolio:

dΠ = dV −∆dS

=

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW −∆ [µS dt+ σS dW ]

=

[
∂V

∂t
+ µS

(
∂V

∂S
−∆

)
+

1

2
σ2S2∂

2V

∂S2

]
dt+ σS

(
∂V

∂S
−∆

)
dW

.

At this position, the portfolio has accumulated all the necessary ingredients. For the

dynamic Delta-hedging re-balancing strategy, we have to consider ∆ =
∂V

∂S
which

gives:

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt. (2.1.1)

This replicating portfolio approach converts the initial stochastic nature to determin-
istic one, since the form with stochastic random variable W vanishes under Delta-
hedging. The final important component involves the interest rate on savings ac-
counts, which provides us with another portfolio where the same Delta-hedging is
applied:

dΠ = r

(
V − S∂V

∂S

)
dt. (2.1.2)

Equating (2.1.1) and (2.1.2) results in the Black-Scholes partial differential equation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2.1.3)

which is supplemented by specific terminal conditions identifying the nature of the
problem. The PDE is well-posed because of the positive diffusion term. The use
of Feynman-Kac theorem Oosterlee and Grzelak (2019) in Financial mathematics is
crucial as it suggests a wider opportunity to make a transition between a stochastic
and a deterministic world.

Theorem 2.1.1 (Feynman-Kac). Assume that money-savings according to constant
interest rate r is given by dM(t) = rM(t)dt and V (S, t) is a price of the option as
a function of time t and stock price S. Suppose that V (S, t) satisfies the following
PDE, with general drift term, µ̄, and volatility term, σ̄ :

∂V

∂t
+ µ̄

∂V

∂S
+

1

2
σ̄2∂

2V

∂S2
− rV = 0,
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with a final condition given by V (S, T ) = H(ST , T ). The price V (S, t) at any time t
and stock price S can be written as:

V (S, t) = e−r(T−t)EQ[H(T, ST ) | F(t)] =:M(t)EQ
[
H(T, ST )

M(T )
| F(t)

]
where the expectation is taken under the measure Q (risk-neutral probability measure),
with respect to a process S, which is defined by:

dS(t) = µ̄(t, S)dt+ σ̄(t, S)dWQ(t), t > t0.

Through Theorem 2.1.1, one could obtain the solution for European call option
PDE (2.1.3) as follows:

V (S, t) = e−r(T−t)EQ[max(S(T )−K, 0) | F(t)]

= e−r(T−t)EQ [S(T )1S(T )>K | F(t)
]
− e−r(T−t)EQ [K1S(T )>K | F(t)

]
.

The exact solution for the European call option reads:

V (t, S) = S(t)FN (0,1) (d1)−Ke−r(T−t)FN (0,1) (d2) ,

where

d1 =
log S(t)

K
+
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

and FN (0,1)(·) is the cumulative distribution function of the standard normal vari-
able. A naive approach to check this solution, by the Feynman-Kac theorem, by
substituting into the BS PDE to verify its correctness.

The derivatives of the exact solution, called Greeks, can be derived. The first
derivative, called Delta ∆:

∆ =
∂

∂S
V (S, t) = FN (0,1) (d1) ,

Delta ∆ shows us the option price’s sensitivity to the stock price change. The second
derivative, the Gamma Γ shows the sensitivity of Delta in the stock price change.

Γ =
∂∆

∂S
= FN (0,1) (d1)

∂d1
∂S

=
F

′

N (0,1) (d1)

Sσ
√
T − t

.

Using one-dimensional BS PDE, it is also possible to obtain the Theta Θ, which will
be shown later 3. An alternative way to find the Theta is from BS PDE directly, as
we already accumulated Delta and Gamma.
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Figure 2.2: Solution of the European call option with S0 = $10, r = 0.05, σ =
0.4, T = 1, K = $10. Left figure: Stock price evolution over time; Right figure:
Option price surface with the projection of the stock price.

Figure 2.3: Solution of the European call option with S0 = $10, r = 0.05, σ =
0.4, T = 1, K = $10. Left figure: Delta; Right figure: Gamma.

Figure 2.2 shows the exact solution of European call option. The stock price path
is generated using the Monte-Carlo integration with the Euler-Maruyama scheme.
The projection of the stock movement was superimposed on the option price surface.
The solution of the BS PDE does not represent any randomness as the Delta-hedging
strategy cancels out the stochastic term W . Nevertheless, the nature of BS is stochas-
tic, and when the size of spatial dimension d ≤ 3, the PDE approach is capable of
producing high-quality results. In Figure 2.3, exactly obtained Delta and Gamma
surfaces are plotted with stock projection. We have presented certain figures to give
readers general information about the simplest cases.
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2.2 Finite Element Method

The first invention of the family of variational methods is associated with Alexander
Hrennikoff Liu et al. (2022). During his thesis work at MIT, he invented a similar
approach to handle the structural mechanics problem, but due to the lack of compu-
tational opportunity, this idea could not be realized. Later in 1941, his first work,
which is nowadays accepted as a starting point of FEM, is the extension of his doc-
toral thesis, where he made a great contribution to the design of metal structures. In
the same year, Richard Courant from NYU gave a talk on numerical techniques that
uses the Rayleigh-Ritz variational principle using a triangular subdomain, which is a
primitive type of modern FEM. After two years, this work has been published. Over
80 years from the first papers of Hrennikoff and Courant, there has been an enor-
mous development of FEM, which has made engineer’s life much simpler. However,
a detailed literature survey on FEM history can be found in Liu et al. (2022).

What does FEM represent nowadays? It is a universal tool used in many applied
mathematics problems, from engineering to biological sciences, and providing an ap-
proximated numerical solution for the models. Throughout this work, the focus of
the main methodology is FEM. This work is far away from being the one of the first
application of FEM into financial world, however, a concise literature survey on FEM
for Financial engineering can be found in section 1.2.

Now, we can represent the Finite Element formulation for the above-mentioned
linear European call option (2.1.3). Before we start with the weak formulation, we
will use the following transformation techniques:

• x = log

(
S

Sint

)
, where Sint is initial stock price.

• τ = T − t,

•
∂V

∂t
= −∂V

∂τ
,

•
∂V

∂S
=

1

S

∂V

∂x
,

•
∂2V

∂S2
=

1

S2

(
∂2V

∂x2
− ∂V

∂x

)
.
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Applying the transformation to (2.1.3), results in initial-boundary value problem as:

∂V

∂τ
=

1

2
σ2∂

2V

∂x2
+

(
r − 1

2
σ2

)
∂V

∂x
− rV in Ω.

V (x, 0) = max(Sinte
x −K, 0),

limx→∞ V (x, τ) ≈ Sinte
x on ΓD,

limx→−∞ V (x, τ) = 0 on ΓD,

(2.2.1)

where ΓD = Γ ≡ ∂Ω.
The transformation, that converts S to x variable takes the origin from mechanics

when one shall proceed with the numerical discretization in logarithmic coordinates,
which is the so-called Landau technique, see e.g. Zhu and Zhang (2011). Reducing
a variable coefficient of diffusion and convection terms to the constant coefficients is
reasonable because, technically, the variable coefficients are closer to causing unpre-
dictable behavior in the solution, such as spurious oscillations or numerical instabil-
ity. The BS equation can always be treated in its original form using the numerical
quadrature rule if we stay under the FEM framework. This approach will create
another source of error in the FE element matrices, while some quadrature rule is
supposed to approximate the integral term. In the current weak formulation setting,
constant coefficients will be beneficial to result as exactly computed integral, conse-
quently exactly obtained element matrices, which directly affects the quality of the
FEM solution.

Let us consider a family of trial solutions as we construct finite-element methods
to approximately discretize the BS PDE (2.2.1). To do so, one may characterize
the two classes of functions: trial solutions and weighting functions. These func-
tions shall satisfy the Dirichlet boundary condition. One may define the space of
square-integrable functions on Ω, which is called L2(Ω). Consider the space of square
integrable functions on Ω, defined by L2(Ω), where for any f : Ω→ R such that∫

Ω

f 2dΩ < +∞.

There is a multi-index α ∈ Nd where d is the number of spatial dimensions. For
α = {α1, . . . , αd}, we define |α| =

∑d
i=1 αi. Let Dα = Dα1

1 D
α2
2 . . . Dαd

d , where Dj
i =

∂j

∂xji
. The requirement is that the derivatives of trial and weighting functions are

square-integrable. If f : Ω → R is a trial solution, then it must satisfy the following
expression: ∫

Ω

∇f · ∇fdΩ < +∞
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this function belongs to the Sobolev space H1(Ω):

H1(Ω) =
{
V
∣∣Dαf ∈ L2(Ω),

∣∣α |≤ 1
}
.

The next step is to define the space for trial solutions S, the requirement to be square
integrable for the functions and satisfaction of Dirichlet boundary condition:

f |ΓD
= g

thus
S =

{
f
∣∣f ∈ H1(Ω), f

∣∣
ΓD

= g
}
.

Now we are in the position to formulate the space for the class of weighting functions
V . However, the formulation of this class is likely to have a similar form to the latter,
except the Dirichlet boundary condition is homogeneous. Then, it is defined as

V =
{
z
∣∣z ∈ H1(Ω), z

∣∣
ΓD

= 0
}
.

The weak formulation of (2.2.1) is then defined as follows. Find V ∈ S such that
for all z ∈ V . ∫

Ω

z
∂V

∂τ
=
σ2

2

∫
Ω

z
∂2V

∂x2
+

(
r − σ2

2

)∫
Ω

z
∂V

∂x
− r

∫
Ω

zV,

where the integration is carried out along the x-direction (dx is not included to save
space). Integration by parts and applying the homogeneous property of the function
z at the boundary results in the weak formulation

∂

∂τ

∫
Ω

zV = −σ
2

2

∫
Ω

∂z

∂x

∂V

∂x
−
(
r − σ2

2

)∫
Ω

∂z

∂x
V − r

∫
Ω

zV, ∀z ∈ V .

Note that the Neumann boundary (natural boundary condition in FE) conditions are
not needed to supplement the well-posedness of the problem, therefore, addition term
standing for Neumann condition vanishes after the integration by parts in diffusion
term as it is homogeneous for most of the BS problems.

To build the finite-element approximation, consider the finite-dimensional sub-
space Sh

0 ⊂ H1
0, spanned by the basis {ψ1, ψ2, . . . , ψn}. The finite-element approxi-

mation to the solution V is the function

Vh =
n∑

i=1

viψi +
∑
i∈I∂

viψi ≃ V, vi ∈ R.
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where ψi∈I∂ are additional functions needed to interpolate the given solutions at the
boundaries. The use of the above approximations results in the weak formulation in
the finite-dimensional space:

∂

∂τ

 n∑
i=1

vi

∫
Ω

zψi +
∑
i∈I∂

vi

∫
Ω

zψi

 = −σ
2

2

 n∑
i=1

vi

∫
Ω

∂z

∂x

∂ψi

∂x
+
∑
i∈I∂

vi

∫
Ω

∂z

∂x

∂ψi

∂x


−
(
r − σ2

2

) n∑
i=1

vi

∫
Ω

∂z

∂x
ψi +

n∑
i∈I∂

vi

∫
Ω

∂z

∂x
ψi


− r

 n∑
i=1

vi

∫
Ω

zψi +
∑
i∈I∂

vi

∫
Ω

zψi

 .

(2.2.2)
In the Galerkin method Kythe and Wei (2004), the test function z is chosen to

coincide with the basis function ψi. Imposing this condition for z = ψj, j = 1, . . . , n

results in the system of equations

∂

∂τ

 n∑
i=1

vi

∫
Ω

ψjψi +
∑
i∈I∂

vi

∫
Ω

ψjψi

 = −σ
2

2

 n∑
i=1

vi

∫
Ω

∂ψj

∂x

∂ψi

∂x
+
∑
i∈I∂

vi

∫
Ω

∂ψj

∂x

∂ψi

∂x


−
(
r − σ2

2

) n∑
i=1

vi

∫
Ω

∂ψj

∂x
ψi +

n∑
i∈I∂

vi

∫
Ω

∂ψj

∂x
ψi


− r

 n∑
i=1

vi

∫
Ω

ψjψi +
∑
i∈I∂

vi

∫
Ω

ψjψi

 .

(2.2.3)
In practice, systems of equations (2.2.3) is constructed via an assembly process using
(local) element matrices, whose structures depend on the choice of the basis functions
ψi. The common choice for the basis functions is a class of functions satisfying the
nodal condition,

ψi(xj) =

{
1, i = j,

0, otherwise,
(2.2.4)

where xj is the nodal point. This choice leads to global systems of linear equations
with sparse and banded coefficient matrices.

2.2.1 Linear polynomial bases

Consider partition of the spatial domain Ω into nE non-overlapping elements Ωj =

[xj−1, xj], with |Ωj| = xj − xj−1 = h, xj, j = 0, . . . , nE, the nodal points, x0 = xmin
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and xnE
= xmax. In the basic element Ωj = [xj−1, xj], we define two linear interpola-

tion basis functions on parametric coordinates, ξ, which will later be transformed to
physical coordinates x

ϕ1(ξ) = ξ and ϕ2(ξ) = 1− ξ, 0 ≤ ξ ≤ 1,

which are called the local linear shape functions in the parametric coordinate ξ asso-
ciated with ϕ(e)

1 (x) and ϕ(e)
2 (x). Where

ξ(x) =
x− x(e)1

x
(e)
2 − x

(e)
1

, x ∈
[
x
(e)
1 , x

(e)
2

]
.

The inverse of ξ(x) is x(ξ) = x
(e)
1 +

(
x
(e)
2 − x

(e)
1

)
ξ. After transformation, linear basis

functions are:

ψj−1(x) = (x− xj)/(xj−1 − xj) = −(x− xj)/h,

ψj(x) = (x− xj−1)/(xj − xj−1) = (x− xj−1)/h,

Evaluating the integrals in (2.2.3) using the above-stated basis functions over the
element Ωj results in the following local (element) matrices:

• For the
∫
ψjψidx term, the element matrix reads

M j =


∫
Ωj

ψj−1ψj−1dx

∫
Ωj

ψj−1ψjdx∫
Ωj

ψjψj−1dx

∫
Ωj

ψjψjdx

 =
h

6

[
2 1
1 2

]
.

• For the −
∫
ψj,xψi,xdx term, the element matrix reads

Kj = −


∫
Ωj

ψj−1,xψj−1,xdx

∫
Ωj

ψj−1,xψj,xdx∫
Ωj

ψj,xψj−1,xdx

∫
Ωj

ψj,xψj,xdx

 = −1

h

[
1 −1
−1 1

]
.

• For the
∫
ψjψi,xdx term, the element matrix reads

N j =


∫
Ωj

ψj−1ψj−1,xdx

∫
Ωj

ψj−1ψj,xdx∫
Ωj

ψjψj−1,xdx

∫
Ωj

ψjψj,xdx

 =
1

2

[
−1 −1
1 1

]
.
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2.2.2 Quadratic polynomial bases

In this approach, we add a midpoint xj− 1
2
= (xj−1 + xj)/2 in the basic element Ωj,

giving three nodal points: xj−1, xj−1/2, and xj, and define three quadratic interpola-
tion polynomials satisfying the nodal condition (4.3.5) on parametric coordinates, ξ
which will later be transformed to physical coordinates x:

ϕ1(ξ) =
−ξ(1− ξ)

2
, ϕ2(ξ) = (1− ξ)(1 + ξ), ϕ3(ξ) =

ξ(1 + ξ)

2

resulting in P2-FEM.

x =
x
(e)
3 + x

(e)
1

2
+

(
x
(e)
3 − x

(e)
1

)
2

ξ

be the linear transformation, and for simplicity also let x(e)2 =
x
(e)
3 + x

(e)
1

2
. Once the

transformation is done, we have:

ψj−1(x) =
(x− xj− 1

2
)(x− xj)

(xj−1 − xj− 1
2
)(xj−1 − xj)

= 2(x− xj− 1
2
)(x− xj)/h2,

ψj− 1
2
(x) =

(x− xj−1)(x− xj)
(xj− 1

2
− xj−1)(xj− 1

2
− xj)

= −4(x− xj−1)(x− xj)/h2,

ψj(x) =
(x− xj−1)(x− xj− 1

2
)

(xj − xj−1)(xj − xj− 1
2
)
= 2(x− xj−1)(x− xj− 1

2
)/h2,

The local element matrices are as follows:

• the
∫
ψjψidx term:

M j =



∫
Ωj

ψj−1ψj−1dx

∫
Ωj

ψj−1ψj− 1
2
dx

∫
Ωj

ψj−1ψjdx∫
Ωj

ψj− 1
2
ψj−1dx

∫
Ωj

ψj− 1
2
ψj− 1

2
dx

∫
Ωj

ψj− 1
2
ψjdx∫

Ωj

ψjψj−1dx

∫
Ωj

ψjψj− 1
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• the −
∫
ψj,xψi,xdx term:

Kj = −



∫
Ωj

ψj−1,xψj−1,xdx

∫
Ωj

ψj−1,xψj− 1
2
,xdx

∫
Ωj

ψj−1,xψj,xdx∫
Ωj

ψj− 1
2
,xψj−1,xdx

∫
Ωj

ψj− 1
2
,xψj− 1

2
,xdx

∫
Ωj

ψj− 1
2
,xψj,xdx∫

Ωj

ψj,xψj−1,xdx

∫
Ωj

ψj,xψj− 1
2
,xdx

∫
Ωj

ψj,xψj,xdx


= − 1

3h

 7 −8 1
−8 16 −8
1 −8 7

 .

• the
∫
ψjψi,xdx term:

N j =



∫
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2.3 Isogeometric analysis

Isogeometric analysis is a recently developed numerical tool that incorporates the el-
ements of computer-aided design (CAD) utilizing the splines as a test function. IGA
was first introduced by Thomas Hughes in 2005 Hughes et al. (2005), Later, publica-
tion of IGA monorgaphy by Cottrell et al. (2009) has raised its further development
and popularity. The core idea behind the IGA is to use splines functions approximate
complicated geometries. Moreover, IGA is a strong tool that has proved its advanta-
geous properties compared to conventional FEM Cottrell et al. (2009). Initially, the
splines were invented in the middle of the last century by Isaac Jacob Schoenberg.
Carl De Boor de Boor (1980) developed a recursive algorith and made it numerically
stable with parametric representation. First crucial usage was related to the car man-
ufacturing industry. Carl De Boor has made a crucial contribution by suggesting new
approaches to control and use of splines. One of the most flexible types of spline is
non-uniform rational B-splines (NURBS), where he has invented and implemented
its practical power into the design of the car body. Afterward, the first time it was
used for classical engineering problems was associated with the IGA. Nevertheless,
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choosing a spline is always challenging, depending on the specific task that must be
addressed. As we demonstrate later in this section, IGA also has weaker points than
the traditional FEM approach.

FEM is not always a choice among practitioners of the Financial industry as its
implementation and realization need more dedicated and advanced attention because
of its complexity in implementation and mathematics. Another noteworthy point
is that FEM is way more complicated than FDM, especially for nonlinear models.
Although, IGA is a more sophisticated method compared to conventional FEM. The
reasonable arguing point is that applying IGA for not-so-complex geometries seen in
Financial derivative problems seems like a rough force to simulate something that
can be done using other traditional simple-to-implement methods. Response to this
moment will be more detailed later in this section.

For the European call option, we use the NURBS as a test function following the
Galerkin method.Let Ξ = {ξ1, ξ2, . . . , ξm}, with m = n + p + 1, be the knot vector,
where the knot values ξi ∈ R are non-decreasing, i.e., ξi ≤ ξi+1, defined in the so-
called parameter space, and p be the polynomial order. The knot vector is said to
be open if the knot value ξ1 and ξm are repeated p+ 1 times. Furthermore, the knot
vector is said to be uniform if the knot values partition the parameter space into equal
elements.

2.3.1 B-spline and NURBS

According to recursive Cox-De Boor’s algorithm de Boor (1980), univariate B-spline
basis function for p = 0 is defined on the parametric domain

Ni,0 =

{
1, if ξi ≤ ξ < ξi+1

0, otherwise
(2.3.1)

and for any p ≥ 1,

Ni,p =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (2.3.2)

Remarks on some properties of the B-Spline functions are in order:

1. Ni,p are nonnegative, piecewise polynomial functions;

2. the sum of basis functions for a given order p is identically unity; and

3. for a uniform knot vector, the functions Ni,p ∈ Cp.
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The latter property is of importance in the calculation of Greeks, the derivatives of
the option price function. B-spline is always non-zero throughout the domain and
only interpolatory at both ends. The continuity level within the knot vector is always
Cp unless a non-uniform knot vector is introduced with Cp−mi differentiability, where
mi is the multiplicity of knot ξi. For our purpose, both uniform and non-uniform
knot vectors are used. A uniform open knot vector is interpolatory only at both ends,
having distinct repeated knot values p + 1 as in Figure 2.4. While a closed knot
vector implies identical first and last knot values, which generates a closed loop. Note
that B-splines are the particular case of the NURBS when the weights are distributed
equally.

Figure 2.4: Left figure: Cubic B-spline with uniform knot vector as
Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5}; Right figure: Cubic B-spline with non-uniform knot
vector Ξ = {0, 0, 0, 0, 1, 2, 3, 3, 3, 4, 5, 5, 5, 5}.

The NURBS inherits the beneficial properties of B-splines and is represented as
a rational form of B-spline basis functions or sometimes referred to as a superset of
B-splines:

Ri,p(ξ) =
Ni,p(ξ)ωi∑n
i=1Ni,p(ξ)ωi

(2.3.3)

where, {ωi}ni=1 are the NURBS weights. Compared to B-Splines, the NURBS ba-
sis functions are more flexible to capture non-smooth data. However, the choice of
weights to perfectly capture different geometries is an open research question. The
discussion of unequal weights will be discussed in the Section 4.5. Compared to B-
Splines, the NURBS basis functions are more flexible (see Figure 2.5) to capture the
complex geometries by an adjusted weight vector.
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Figure 2.5: Left figure: Cubic NURBS with uniform knot vector and unequal weight
vector as
Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5}, ω = {1, 1, 1, 4, 3, 5, 1, 1}; Right figure: Cu-
bic NURBS with non-uniform knot vector and unequal weight vector as Ξ =
{0, 0, 0, 0, 1, 2, 3, 3, 3, 4, 5, 5, 5, 5}, ω = {1, 1, 1, 1, 4, 3, 5, 1, 1, 1}.

The weights wi > 0, i = 1, 2, . . . , n need to be determined. The most appropriate
fitting weights will be measured by the mean L2 errors Posṕı̌sil and Šv́ıgler (2018)

ENURBS =

∫
Ω

(Vexact(ξ)− Vh,NURBS(ξ))
2 dξ

where ENURBS is minimized with respect to the weights wi.
In the same manner as we did for FEM, in IGA we are considering the family of

trial solutions for spatial discretization:

V (x, τ) ∈ S =
{
V
∣∣V ∈ H1(Ω), V

∣∣
ΓD

= g
}
.

and weighting functions are defined as

z ∈ V =
{
z
∣∣z ∈ H1(Ω), z

∣∣
ΓD

= 0
}
.

Then the weak formulation is the same as we did for FEM except, now, the finite-
dimensional subspace Sh

0 ⊂ H1
0, spanned by the basis {R1, R2, . . . , Rn}. The IGA

NURBS-based finite-element approximation to the solution U is the function

Vh =
n∑

i=1

viRi +
∑
i∈I∂

viRi, ui ∈ R,

where Ri∈I∂ are additional functions needed to interpolate the given solutions at the
boundaries. The use of the above approximations results in the weak formulation in

25



the finite-dimensional space:

∂

∂τ

 n∑
i=1

vi

∫
Ω

zRi +
∑
i∈I∂

vi

∫
Ω

zRi

 = −σ
2

2

 n∑
i=1

vi

∫
Ω

∂z

∂x

∂Ri

∂x
+
∑
i∈I∂

vi

∫
Ω

∂z

∂x

∂Ri

∂x


−
(
r − σ2

2

) n∑
i=1

vi

∫
Ω

∂z

∂x
Ri +

n∑
i∈I∂

vi

∫
Ω

∂z

∂x
Ri


− r

 n∑
i=1

vi

∫
Ω

zRi +
∑
i∈I∂

vi

∫
Ω

zRi

 ,

(2.3.4)
In the Galerkin method Cottrell et al. (2009), the test function z is chosen to coincide
with the basis function Ri. Imposing this condition for z = Rj, j = 1, . . . , n results
in the system of equations

∂

∂τ

 n∑
i=1

vi

∫
Ω

RjRi +
∑
i∈I∂

vi

∫
Ω

RjRi

 = −σ
2

2

 n∑
i=1

vi

∫
Ω

∂Rj

∂x

∂Ri

∂x
+
∑
i∈I∂

vi

∫
Ω

∂Rj

∂x

∂Ri

∂x


−
(
r − σ2

2

) n∑
i=1

vi

∫
Ω

∂Rj

∂x
Ri +

n∑
i∈I∂

vi

∫
Ω

∂Rj

∂x
Ri


− r

 n∑
i=1

vi

∫
Ω

RjRi +
∑
i∈I∂

vi

∫
Ω

RjRi


(2.3.5)

Since the complexity of the NURBS functions entails the inevitable recourse to nu-
merical quadrature, the actual integration of the element matrices is carried by the
Gauss-Legendre quadrature rule, see, e.g., Cottrell et al. (2009). Although to increase
the accuracy of the element matrices, one could increase the Gaussian points ngp, as
it was tested for a linear European call option, a large number of Gaussian ngp does
not affect the solution. The number of quadrature points is chosen to be ngp = p+1.

2.3.2 Gauss-Legendre quadrature

In piecewise polynomial-based FEM, the inner products can be evaluated relatively
straightforwardly. This is typically done once on the so-called reference element.
Evaluation of the inner products cannot however be done analytically due to the
complexity of the NURBS basis functions and their derivatives. Numerical integration
is therefore performed to approximately calculate the inner products. One popular
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method for numerical integration is based on Gauss-Legendre quadrature Sevilla and
Fernández-Méndez (2011); Jiang and Lin (2022).

The Gauss-Legendre quadrature rule for numerical integration of a function f over
the interval [−1, 1] is ∫ 1

−1

f(ζ)dζ ≈
pL∑
i=1

ωif(ζi), (2.3.6)

where ζi are the p zeros of the normalized Legendre polynomial of order pL, PL,p, and
the weights ωi are given by

ωi =
b− a

(1− ζ2i )
(
P ′
L,p(ζi)

)2 .
Applying the rule to an arbitrary interval [a, b] ⊆ [ξ0, ξm] in, e.g., the parameter space,
requires a change of interval of integration to [−1, 1], yielding∫ b

a

f(ξ)dξ =

∫ 1

−1

f

(
b− a
2

ζ +
b+ a

2

)
dξ

dζ
dζ, (2.3.7)

where dξ/dζ = (b−a)/2. For accuracy, the rule is not applied over the entire interval
[ξ1, ξm]. Instead, the interval of integration is partitioned into subintervals, in each of
which the Gauss-Legendre quadrature rule is applied.

2.4 Time integration scheme

Resulting FE element matrices can be written in a more general form. So far, we
have provided details on how the space variable is discretized. To perform the time
integration, we shall use θ-scheme, where the value of theta varies in the range [0, 1].
To approximate a time derivative, one could use a finite difference method. Finally,
using global finite element matrices, the system of equations can be written as:

∂

∂τ
(Mv + b̂M,v) = −

σ2

2
Kv −

(
r − σ2

2

)
Nv − rMv − β1(v) := F1(v), (2.4.1)

where

β1(v) =
σ2

2
bK,v +

(
r − σ2

2

)
bN,v + rbM,v, (2.4.2)

is the boundary condition vector. Time integration of the system (2.4.1) is carried out
by applying the θ-scheme on both equations, which results in the systems, ∆τ = T/nτ ,
and nτ the number of time steps,

Mvm+1 + b̂
m+1

M,v −Mvm − b̂
m

M,v = θ∆τF2(v
m+1) + (1− θ)∆τF2(v

m),
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or

A11v
m+1 = Ã11v

m + θ∆τβm+1
1 + (1− θ)∆τβm

1 + b̂
m

M,v − b̂
m+1

M,v , (2.4.3)

where

A11 = M + θ∆τ

(
σ2

2
K +

(
r − σ2

2

)
N + rM

)
Ã11 = M − (1− θ)∆τ

(
σ2

2
K +

(
r − σ2

2

)
N + rM

)
.

Now, we can solve the FE system using the Crank-Nicolson method (when θ = 1/2);
during the process of solving the system, the algorithm is standard. Therefore, we did
not provide the algorithm for this case. First, we start computing, βm+1

1 then using
vm compute the vm+1 from (2.4.3). Note that the time integration scheme is also
valid for the IGA NURBS case, as it does not modify the equation’s structure. The
only difference can be found in local and global element matrices, which corresponds
to a different choice of test functions that are used in the weak form.

2.5 Stability analysis

This section presents the stability analysis of the time integration scheme for the
linear Black-Scholes equation for the European call option via Von Neumann analysis,
sometimes called Fourier analysis. It is important to note that the Von Neumann
stability analysis is the common approach when one deals with linear and constant
coefficient systems. Even if the classical Von Neumann analysis has a limitation of
applicable range, which is restricted by linear problems, it is still possible to create
additional conditions for the amplification factor1 so that the nonlinearity can be
analyzed in terms of stability.

According to the Lax equivalence theorem Trefethen (1996), the convergence of
the linearized scheme is equivalent to the stability of the scheme. Therefore, the
convergence of the scheme is based on stability.

Theorem 2.5.1. A linear, scalar, constant-coefficient finite difference formula is
stable in L2 norm if and only if the amplification factors ζ satisfy,

|ζ| ≤ 1.

1Amplification factor describes how error perturbations are changing according to time.
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The matrix equation (2.4.1) is considered for stability analysis. As the stability
analysis is conducted on interior points, the boundary conditions here are omitted.
Mass, stiffness, and convective matrices are based on P1-FEM basis functions. For
the convenience of the analysis, the element matrices are rewritten in general form.

Theorem 2.5.2. According to the Lax equivalence theorem, the stability of the con-
sistent linear scheme implies convergence. The stability by Von Neumann analysis is
(1− θ) ≤ θ which is pointed out in Theorem 2.5.1.

Proof. From Fourier analysis, we need to assume that at the points (τm, xn) the

solution is defined as vm
n = ζmeinϕ. The proportion of

ζm+1

ζm
is denoted as ζ. Now,

by substituting the vm
n into (2.4.1), one may obtain the characteristic equation as:

ζ =
∆τ(1− θ)D + h/3(2 + cosϕ)

h/3(2 + cosϕ)−∆τθD
(2.5.1)

where D =
σ2

h
(1− cosϕ) + i(r− σ2

2
) sinϕ− rh

3
(2+ cosϕ). The amplification factor’s

absolute value according to the Theorem 2.5.1 should be less than one; therefore, by
taking the absolute value from (2.5.1)

∆τ(1− θ)D + h/3(2 + cosϕ) ≤ h/3(2 + cosϕ) + ∆τθD

this implies
(1− θ) ≤ θ

which holds if and only if θ ≥ 1/2. Alternatively, the amplification factor can also be
written as

ζ =
X1 + iY1

X2 + iY2

where

X1 =
2 + cosϕ

3
(h−∆τh(1− θ)(r + rc)) + ∆τ(1− θ)σ

2

h
(1− cosϕ),

Y1 = ∆τ(1− θ)(r − σ2

2
) sinϕ,

X2 =
2 + cosϕ

3
(h+∆τhθ(r + rc))−∆τθ

σ2

h
(1− cosϕ),

Y2 = −∆τθ(r −
σ2

2
) sinϕ.
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By taking the magnitude from ζ as

|ζ|2 = X
2
1 + Y2

1

X 2
2 + Y2

2

and after some tedious calculations, one can conclude that |ζ| < 1. This statement
informs that the proposed scheme is unconditionally stable if the choice of θ is ap-
propriate, which finalizes the proof.

2.6 Absolute stability of the time integration scheme

Absolute stability ensures that the numerical method maintains stability across vary-
ing step sizes and refinement, preventing unbounded error growth and preserving the
accuracy of the solution. The system of algebraic differential equation (2.4.1) is a
constant coefficient problem which can be written as u′(τ ) = Au(t). This system
could be solved using various time-stepping techniques, which are zero-stable, in the
sense that it will converge as τ → 0. However, in experiments, it is possible that
instability may occur for the finite number of ∆τ , for example, in the Euler explicit
method, when θ = 0. Let us consider the eigenvalue decomposition A = V DV −1,
then

u′ =
(
V DV −1

)
u,(

V −1u′) = D
(
V −1u

)
,

y′ = Dy

where y(τ) = V −1u(τ ). Since D is a diagonal matrix, the elements of the vector y
are independent of each other. Then each y′j = λjyj, where λj is an eigenvalue of A.
Now, we are in the position to consider the eigenvalue problem

y′ = λy.

Let λ be a complex number. Therefore, y(t) might be complex as well. The solution
of the above eigenvalue problem can be seen as follows:

y(t) = etλ.

If we write λ in real and imaginary parts as λ = α + iβ, then by Euler’s identity,∣∣et(α+iβ)
∣∣ = ∣∣etα∣∣ · ∣∣eitβ∣∣ = etα.

Hence, the solution of the eigenvalue problem is bounded when τ →∞, if α = Reλ ≤
0. In the complex plane, one might easily see that the stability region is the left half
of it.
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Now let us consider the discrete solution of the proposed problem using the Euler
method (explicit case when θ = 0) provided with the given initial data (pay-off):

yk+1 = yk + τ (λyk) = (1 + τλ)yk,

where λτ is denoted as ζ. One could easily observe that yk = (1 + ζ)k, thus,

|yk| = |1 + ζ|k,

from this expression, the conclusion can be deduced as follows: |yk| will be bounded
as k → ∞, if and only if |1 + ζ| ≤ 1 or {ζ ∈ C||1 + ζ |< 1}. Geometrically, this can
be written as:

|ζ + 1| = |ζ − (−1)| ≤ 1,

this defines a closed disk of radius 1 centered at (−1, 0), where within this disk the
absolute stability region holds.

In the same manner, one can derive the region of absolute stability for the back-
ward Euler method (when θ = 1) as yk = (1− ζ)−k. Therefore, the absolute stability
needs to satisfy |ζ − 1| ≥ 1 or {ζ ∈ C||1 − ζ |≥ 1}. Basically, we are moving to
the counterpart of the Euler method, changing the absolute stability region to stay
outside the unit circle on the left half of the complex plane.

However, it is important to note that, for our scope, one shall consider the so-called
trapezoidal rule or Crank-Nicolson (when θ = 1/2) method based on the absolute
stability region. For this purpose, one could follow the above steps to derive a new

inequality as
∣∣∣∣1 + ζ/2

1− ζ/2

∣∣∣∣ < 1 or {ζ ∈ C||1 + ζ/2

1− ζ/2
|< 1}. At this point, we must mention

that the backward Euler and trapezoidal rules are unconditionally stable or A-stable
in the sense that the absolute stability region lies on the left half plane. This can not
be true for the Euler method, which is conditionally stable but also A-stable.

For both the backward Euler and Crank-Nicolson time-stepping methods for linear
European call option problem, we demonstrate the eigenvalues in Figure 2.6, which
are crucial for the determination of the absolute stability region. Moreover, one could
see that for linear problems, there are no instability issues that can be posed based on
absolute stability region for the time integrator and depicted eigenvalues that belong
to the same stability range. One could find out that the Crank-Nicolson method
has shared the same conclusion as Euler backward in Figure 2.7. It is important to
note that based on realistic parameters of the model, such as r, h, σ, θ, and ∆τ , the
eigenvalues meet the requirement of the absolute stability region; however, utilizing
an impractical set of parameters the instability may occur.
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Figure 2.6: Absolute stability region of the time integration scheme for backward
Euler, when θ = 1

Figure 2.7: Absolute stability region of the time integration scheme for Crank-
Nicolson, when θ = 1/2
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Figure 2.8: Solution of the European call option with S0 = $100, r = 0.05, σ = 0.2,
T = 1, K = $100. Left figure: Stock price evolution over time; Right figure: Option
price surface with the projection of the stock price.

2.7 Numerical results

This section provides numerical examples based on P1-P2-FEM, Linear, Quadratic,
and Cubic NURBS-based option prices. It is a common practice to provide some
benchmarking range for the comparison, therefore, we have provided FDM based
solutions. Note that there won’t be any specific details on FDM implementation and
scheme nuances, as we maintain the focus on FEM and IGA.

2.7.1 Uniformly generated mesh

Parameters for these examples, when σ = 0.2, r = 0.05, K = $100, T = 1. Initially,
the physical domain in S is semi-infinite, after Landau’s transformation, it trans-
formed to infinite domain, however, for computational convenience we truncate the
domain in x ∈ Ω = [−6, 2]. As was mentioned, for space discretization, we have
provided weak formulations. Based on P1-P2 FEM, a system (2.2.3) is integrated
analytically, which resulted in the above-mentioned local FE matrices. Based on
Linear, Quadratic, and Cubic NURBS basis functions, we refer to (2.3.5) where the
integration is resolved by the Gaussian Legendre quadrature rule. For time integra-
tion scheme, we derived a standard θ-scheme for European call option with θ = 1/2

(Crank-Nicolson).
Firstly, we present a surface solution in three dimensions to see the general pattern.

It can be observed that similar behavior could be detected between Figure 2.2(right)
and Figures 2.8, 2.9, 2.10. In space and time, the mesh is generated uniformly,
however, more sophisticated mesh types will be discussed in next sections 5. One
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Figure 2.9: Solution of the European call option with S0 = $100, r = 0.05, σ = 0.2,
T = 1, K = $100. Left figure: Stock price evolution over time; Right figure: Option
price surface with the stock price projection.

Figure 2.10: Solution of the European call option with S0 = $100, r = 0.05, σ = 0.2,
T = 1, K = $100. Left figure: Stock price evolution over time; Right figure: Option
price surface with the projection of the stock price.

could easily see the similarity between all surfaces generated by different methods,
especially, this sameness could be observed in Figure 2.11. When we double the
number of nodes and time steps, we see the same behavior. However, this is the
simplest case when boundary conditions are defined as constant, and the governing
PDE is linear.

2.7.2 Non-uniformly generated mesh

Henceforth, NURBSn denotes NURBS with non-uniform knot vector and NURBSF
n is

fitted NURBS with non-uniform knot vector. Error estimates Amanbek and Wheeler
(2019); Amanbek et al. (2020) are provided for uniform, non-uniform NURBS and
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Figure 2.11: Solution of the European call option with S0 = $100, r = 0.05, σ = 0.2,
T = 1, K = $100. Left figure: Stock price evolution over time; Right figure: Option
price surface with the projection of the stock price.

Figure 2.12: Solution of the European call option t = 0, r = 0.05, σ = 0.2, K̂ = $100.
Left figure: Uniform meshing with nE = 28, nτ = 6 ∗ 104; Right figure: Non-uniform
meshing with nE = 28, nτ = 6 ∗ 104.

P2-FEM as E1 =∥ ENURBS ∥L2 , E2 =∥ ENURBSn ∥L2 and E3 =∥ EP2 ∥L2 , respectively.
In IGA, NURBS is well known to be a flexible tool that suggests effective treatment

for non-smooth initial data. However, NURBS is defined in parametric space, where
the knot vector is defined. As mentioned, to specify the non-smoothness seen in
initial data, we rely on the non-uniform knot vector. Note that it has nothing to do
with adaptive FEM since this is natural by the properties of the splines. Throughout
the parametric domain, splines are continuously differentiable, which is an advantage
over other polynomial-based approaches. In our initial data, the kink is presented at
strike price, therefore, one shall use a non-uniform knot vector which meant to be
repeated knots at certain point.
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Figure 2.13: Solution of the European call option t = 0, r = 0.05, σ = 0.2, K̂ = $100.
Left figure: Uniform meshing with nE = 28, nτ = 6 ∗ 104; Right figure: Non-uniform
meshing with nE = 28, nτ = 6 ∗ 104.

As an example, we considered the linear European call option with IGA non-
uniform knot vector to see its effect on the solution at the linear level, aiming to apply
it for the nonlinear convertible bond case. In Figure 2.12 and 2.13, we could observe
how the grid points are distributed in uniform and non-uniform knot vector cases in
large and small scales, respectively. In the case of a non-uniform knot vector, the
grid points are concentrated in a dense way near the strike price. The kink position
in initial data motivates the choice of repeating knot values. The original Black-
Scholes problem involves a varying Peclet number throughout the space. However,
using Landau transformation, the absence of varying Peclet numbers eases the range
where non-uniform grids are distributed to capture the possible instability that could
be caused by the non-smooth kink in the pay-off. The results of these modifications
are reported in Table 2.1; using a few levels of refinement, one could see that Cubic-
NURBS-IGA is converging to the exact solution away faster than its counterpart.
nτ is intentionally set to a large number to avoid the error contribution from the
time dimension. Based on the evolution of errors for uniform mesh, the average
cubic convergence using Cubic-NURBS is maintained. This result is one degree lower
when compared to a priori error estimates from Bazilevs et al. (2006) for the elliptic
problem, which agrees with the classical FEM result where the convergence order is
p+1 under h−refinement. In the case of P2-FEM, one shall notice that the integration
of element matrices is computed analytically, which suggests better convergence than
Cubic-NURBS. However, the non-uniform knot vector by Cubic-NURBS deals with
the linear European call option relatively satisfactorily since the FEM approximation
by exactly calculated element matrices results in a better convergence using a lesser
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degree of freedom (DOF). Nevertheless, the following results, presented only for linear
Black Scholes, can not be expected for nonlinear cases with convertible bonds.

Table 2.1: European call option at t = 0 and K̂ = $100 computed by NURBS. Exact
price is $10.4505. During the refinement nτ = 6 ∗ 104 is fixed.

Unfitted NURBS Fitted NURBS
nE P2-FEM NURBS NURBSn E1 E2 E3 nE NURBSF

n

25 10.3792 12.2987 10.5256 1.8482 0.0751 0.0712 25 10.4505
26 10.4702 10.9524 10.4691 0.5019 0.0185 0.0197 26 10.4505
27 10.4513 10.5652 10.4544 0.1147 0.0025 0.0008 27 10.4505
28 10.4506 10.4835 10.4513 0.0330 0.0006 0.0001 28 10.4505
29 10.4505 10.4555 10.4507 0.0050 0.0002 0.0000
210 10.4505 10.4519 10.4505 0.0014 0.0000 0.0000
211 10.4505 10.4509 10.4505 0.0004 0.0000 0.0000
212 10.4505 10.4507 10.4505 0.0002 0.0000 0.0000

The weights used to define the role of the control point throughout the physical
domain were equal by using unfitted weights, therefore, the role of the control points
was equally distributed in the spatial domain having equal impact at each node.
Nevertheless, this kind of configuration is motivated to produce a fair comparison with
other techniques. It is a well-known fact that the NURBS is able to describe complex
geometry because of its supreme flexibility Hughes et al. (2005). Furthermore, to
realize the potential of the NURBS, we aim to use fitted weights Posṕı̌sil and Šv́ıgler
(2018) according to the initial data represented as a pay-off function. The kink at
the strike price is the area where the gradient is dominant and can entail stronger
changes during the refinement process. Essentially, the range around that kink is of
interest to determine how the model behaves in time and space as we approach the
exact solution, depending on the specific task.

In Table 2.1, the fitted NURBS with non-uniform knot vector results are note-
worthy, compared to those by unfitted NURBS or other techniques, suggesting the
numerical result which is consistent with an exact solution using a few DOFs. As we
increase the DOFs, one can observe that they remain unchanged since 4 decimal place
precision is achieved by just 32 elements. However, achieving such results is only pos-
sible in the presence of a closed-form or reference solution. This demands a reference
to manually adjust the weights, resulting in exactly described geometry. For instance,
in reference Posṕı̌sil and Šv́ıgler (2018), authors have solved the optimization task to
find the best fitting NURBS weights using a uniform knot vector in the presence of

37



Figure 2.14: Solution of the European call option t = 0, r = 0.05, σ = 0.2, K̂ = $100.
Left figure: Non-uniform meshing with nE = 25, nτ = 2 ∗ 104; Right figure: NURBS
weights.

Figure 2.15: Solution of the European call option t = 0, r = 0.05, σ = 0.2, K̂ = $100.
Left figure: Non-uniform meshing with nE = 26, nτ = 2 ∗ 104; Right figure: NURBS
weights.
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Figure 2.16: Solution of the European call option t = 0, r = 0.05, σ = 0.2, K̂ = $100.
Left figure: Non-uniform meshing with nE = 27, nτ = 2 ∗ 104; Right figure: NURBS
weights.

exact solutions. In contrast, we focus on the kink area using a non-uniform knot vec-
tor supplemented with experimentally obtained unequal weights. Firstly, the weights
on both ends are assigned to be equal, secondly, we use a higher value of the weights
at non-uniformly defined knot value at the kink. After several experiments with dif-
ferent weights, one could easily obtain the desired weight value, where the weights
are adjusted manually at three points, as mentioned, to fit the benchmark range. As
a result, in Figure 2.16, a few control points are depicted aligning with the exact
solution. The weight distribution is higher in the middle of control points, implying
that those near the strike price play a more crucial role in accurately representing
the kink geometry. However, it is important to use this approach with great care,
as inappropriate choice of weights can lead to numerical instability. While validated
reference weights for specific higher-dimensional engineering problems are used in the
research community Hughes et al. (2005). Selecting appropriate weights for a specific
problem remains a variable challenge and the quest. For a universal tool that can
optimally tune any geometry remains an open research gap in the literature.
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Chapter 3

Leland model for option pricing with
transactions

3.1 Introduction

A European call option without transaction costs or stock borrowing fees can be con-
sidered in a frictionless market, which does not align with real market conditions.
Numerous models in the literature are designed to accurately represent transaction
costs, such as those by Leland (1985); Frey and Stremme (1997); Barles and Soner
(1998); Jandačka and Ševčovič (2005). Additionally, various numerical methods exist
for solving PDE-based option pricing models that incorporate transaction costs Chris-
tara and Wu (2022); Wei et al. (2024). However, no studies have applied isogeometric
analysis (IGA) to the Leland model for transaction option pricing. Furthermore,
calculating post-processing Greek values is of significant interest, comparable to de-
termining the option price itself. We apply IGA for a nonlinear European call option
with transaction costs Wei et al. (2024); Leland (1985). Numerical results justify
that IGA outperforms conventional P2-FEM regarding the accuracy and variation
diminishing property for the benchmark problem Wei et al. (2024). A P2-FEM ba-
sis function is partially negative, and a description of the price using it can entail
the so-called Gibbs phenomenon Cottrell et al. (2009). However, the spurious oscilla-
tions caused by P2-FEM are effectively mitigated by Non-Uniform Rational B-Splines
(NURBS) for post-processing Greek values. Moreover, computed option prices gen-
erated by IGA reveal consistency with reference solutions. Although one could use
traditional FDM to compute the Greeks from the IGA solution, this does not suggest
any advancements. As NURBS basis functions are Cp continuous, Greeks can be cap-
tured by these basis functions. For example, P2-FEM exhibits spurious oscillations
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in second-order Greek values, in contrast, IGA post-processing values obtain smooth
second-order Greeks.

Within this chapter, we would like to propose several novelties that warrant the
reader’s attention:

• It is the first instance when IGA based on NURBS is applied to a nonlinear
European contract.

• IGA performance has demonstrated the treatment of spurious oscillations pre-
viously encountered with P2-FEM.

• The Greeks are calculated by post-processing IGA-FEM and FEM algorithms
rather than simply relying on FDM, which could create and change the nature
of the solution by introducing another source of error.

• Computation of Greeks using IGA for nonlinear European contracts was han-
dled smoothly, whereas P2-FEM ended up with oscillations in second-order
Greek values.

3.1.1 Leland model as European contract

European call option price with transaction costs V = V (S, t) can be calculated at
any time t and asset value S using Leland’s PDE:

∂V

∂t
+

1

2
σ2S2

(
1 + Le sgn

(
∂2V

∂S2

))
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.

For European-style contracts, the option can not be exercised before terminal time
T , the terminal and boundary conditions are:

V (S, T ) = max(S − K̂, 0),

V (0, t) = 0 as S → 0,

V (S, t) ≈ S as S →∞,

where r is risk-free interest rate, S is the asset value and σ is volatility. The constant

Le =

√
2

π

c

σ
√
δt

is the Leland number where c is the round trip of transaction costs

per currency limit and sgn is the sign function.
The Black-Scholes model in linear form suffers from being inconsistent with deriva-

tive market reality. Although the PDE is modified according to transaction costs
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Leland (1985) does not promise to be a universal tool. More advanced financial flex-
ibility can be delivered by introducing the American-style contract, where the option
can be exercised at any time. This will introduce the nonlinearity into the PDE
which is similar to the convertible bond task in 5. This modification allows portfolio
rebalancing at δt with transaction costs proportional to the asset value.

3.1.2 Transformation

For the Leland model, based on previous work Wei et al. (2024), a different transfor-
mation is applied:

• τ =
1

2
σ2(T − t) and hence t = T − 2τ

σ2
;

• x = ln(S) + kτ and hence S = ex−kτ ; and

• û(x, τ) = ekτV (S, t), and thus V (S, t) = e−kτ û(x, τ).

Corresponding derivatives:

•
∂V

∂t
=
σ2

2
e−kτ (−k∂û

∂x
+ kû− ∂û

∂τ
),

•
∂V

∂S
=

1

S
e−kτ ∂û

∂x
, and

•
∂2V

∂S2
=

1

S2
e−kτ (

∂2û

∂x2
− ∂û

∂x
).

A European call option with transaction costs:

∂û

∂τ
=
∂2û

∂x2
− ∂û

∂x
+ Le

∣∣∣∣∂2û∂x2
− ∂û

∂x

∣∣∣∣ = 0, (3.1.1)

for convenience, it can be formulated in a different way, which will be later discretized
as Differential-Algebraic System (DAE):

∂û

∂τ
= ũ+ Le |ũ| ,

ũ =
∂2û

∂x2
− ∂û

∂x

(3.1.2)

note that, Le sgn
(
∂2û

∂x2
− ∂û

∂x

)(
∂2û

∂x2
− ∂û

∂x

)
= Le

∣∣∣∣∂2û∂x2
− ∂û

∂x

∣∣∣∣. The corresponding

boundary and initial conditions:

û(x, 0) = max(Sinte
x − K̂, 0)

û(x, τ) = 0 as x→ −∞

û(x, τ) ≈ Sinte
x as x→∞.
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From a mathematical perspective, the Leland model for transaction costs introduces
nonlinearity via the diffusion term. The classical Black-Scholes PDE for a European
call option is linear, allowing for a closed-form solution. However, in the Leland model,
an analytical solution is not available in the literature, necessitating the use of numeri-
cal methods. After certain transformations, the nonlinearity extends to the convection
term as well. As demonstrated in Section 3.4, the choice of spatial-temporal mesh
sizes must adhere to a specific upper bound to prevent blow-up solutions near the
right boundary and current time. We first separate the single PDE into a system
of DAEs. The decoupled system is solved at each time step and then substituted
back into the main governing equation. Moreover, we solve this system using a lin-
earization technique (see Section 3.3), which is not an iterative scheme. As a result,
the convergent solutions may lack precision beyond a certain level of decimal-place
accuracy. Another approach involves considering penalty-like matrices Christara and
Wu (2022) and solving the problem using more advanced iterative schemes, which we
defer to future work.

3.2 Isogeometric analysis

3.2.1 Weak formulation for Leland model

For spatial discretization, the collection of trial solution

û(x, τ), ũ(x, τ) ∈ S =
{
f
∣∣f ∈ H1(Ω), f

∣∣
ΓD

= g
}

and weighting functions are defined as

w, q ∈ V =

{
f̂
∣∣∣f̂ ∈ H1(Ω), f̂

∣∣∣
ΓD

= 0

}
.

The weak formulation: ∫
Ω

w
∂û

∂τ
h =

∫
Ω

wũh+ Le

∫
Ω

w|ũ|h,

∫
Ω

qũh =

∫
Ω

q

(
∂2û

∂x2
− ∂û

∂x

)
h,

(3.2.1)

using integration by parts, it has the following form:∫
Ω

qũh = −
∫
Ω

∂q

∂x

∂û

∂x
−
∫
Ω

q
∂û

∂x
h. (3.2.2)
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Consider now the finite dimensional subspace Sh
0 ⊂ H1

0, spanned by the basis {R1, R2, . . . , Rn}.
The IGA NURBS-based finite-element approximation to the solution U is the function

ûh =
n∑

i=1

ûiRi +
∑
i∈I∂

ûiRi, ûi ∈ R,

where Ri∈I∂ are additional functions needed to interpolate the given solutions at
the boundaries. A similar form of approximation to ũ but without boundary terms,
namely

ũh =
n+1∑
i=0

ũiRi, ũi ∈ R.

Then, (3.2.1) can be written as

0 =
∂

∂τ

∫
Ω

w

{
n∑

i=1

ûiRi +
∑
i∈I∂

ûiRi

}
dx−

∫
Ω

(w
n∑

i=1

ũiRi + Le · w|
n+1∑
i=0

ũiRi|)h

=
∂

∂τ

n∑
i=1

ûi

∫
Ω

wRih+
∂

∂τ

∑
i∈I∂Ω

ûi

∫
Ω

wRih−
n∑

i=1

ũi

∫
Ω

wRih

− Le

∫
Ω

w|
n+1∑
i=0

ũiRi|h.

For (3.2.2), with ũx =
n∑

i=1

ũiRi,x +
∑
i∈I∂Ω

ũiũi,x, we have

0 =

∫
Ω

q
n+1∑
i=0

ũiRih+

∫
Ω

qx

(
n∑

i=1

ûiRi,x +
∑
i∈I∂Ω

ûRi,x

)
h

+

∫
Ω

q

(
n∑

i=1

ûRi,x +
∑
i∈I∂Ω

ûRi,x

)
h

=
n∑

i=1

ũi

∫
Ω

qRih+
n∑

i=1

ûi


∫
Ω

qxRi,xh+

∫
Ω

qRi,xh


+

∑
i∈I∂Ω

ûi


∫
Ω

qxRi,xh+

∫
Ω

qRi,xh

 .
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By enforcing the above equation to be satisfied by qj, j = 0, . . . , n + 1 results in the
system of n equations

0 =
n+1∑
i=0

vi

∫
Ω

zjϕih+
n∑

i=1

ui


∫
Ω

zj,xψi,xh+

∫
Ω

zjψi,xh


+

∑
i∈I∂Ω

ui


∫
Ω

zj,xψi,xh+

∫
Ω

zjψi,xh

 . (3.2.3)

For our finite element models, we consider the Galerkin approach, where we set
wi = qi = Ri. Equations (3.2.3) and (3.2.3) then become, for j = 1, . . . , n

∂

∂τ

n∑
i=1

ûi

∫
Ω

RjRih +
∂

∂τ

∑
i∈I∂Ω

ûi

∫
Ω

RjRih =
n∑

i=1

ũi

∫
Ω

RjRih+ Le

∫
Ω

Rj|
n+1∑
i=0

ũiRi|h.

n+1∑
i=0

ũi

∫
Ω

RjRih = −
n∑

i=1

ûi


∫
Ω

Rj,xRi,xh+

∫
Ω

RjRi,xh


−

∑
i∈I∂Ω

ûi


∫
Ω

Rj,xRi,xh+

∫
Ω

RjRi,xh

 .

Once we accumulate the last stage of weak formulation, one shall apply the Gauss-
Legendre rule to approximate the integrals. Afterward, the element matrices will
proceed through assembling process to obtain the global IGA system, to which later,
the θ-scheme is supposed to be applied.

3.3 Time integration scheme

Based on (3.2.1) and (3.2.2), the system of differential-algebraic equations can be
written as:

∂

∂τ
(M û+ bM) =M ũ+ LeM |ũ| := F, (3.3.1)

where ũ =M−1(−Kû−N û− bK − bN),

1

∆τ
(M ûn+1 + bn+1

M − (M ûn + bn
M)) = θFn+1 + (1− θ)Fn,

with θ ∈ [0, 1]. θ = 0 and 1 correspond to the explicit forward and implicit backward
Euler method, respectively. Rearranging

M ûn+1 − θ∆τ(M ũn+1 + LeM |ũn+1|) =M ûn + (1− θ)∆τFn − bn+1
M + bn

M .
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With vn+1 =M−1(−Kun+1 −Nun+1 − bn+1
K − bn+1

N ), we have

M ûn+1 − θ∆τ(−Kûn+1 −N ûn+1 + LeM |ũn+1|) = M ûn + (1− θ)∆τFn − bn+1
M + bn

M

+ θ∆τ(−bn+1
K − bn+1

N ) (3.3.2)

linearization using |ũn+1| = |ũn| gives

Aûn+1 =M ûn + (1− θ)∆τFn + θ∆τLeM |ũn| − bn+1
M + bn

M + θ∆τ(−bn+1
K − bn+1

N )

with

A = M − θ∆τ(−K − P ),

Fn = M ũn + LeM |ũn|,

ũn = M−1(−Kûn −N ûn − bn
K − bn

N)

The Crank-Nicolson method is modified with variable time-stepping such as the Ran-
nacher approach Rannacher (1984), in which the iterant is replaced by the nR back-
ward implicit Euler steps with modified time steps (e.g., ∆τR = ∆τ/nR), where nR

is the number of backward Euler time steps. Since the boundary conditions for the
Leland model are fixed, it eases the time integration process. Therefore, the solutions
are computed using Crank-Nicolson scheme except the first time step, when Ran-
nacher start shall be used. In Yousuf et al. (2012), Leland model is reformulated in
terms of min function, which is called Penalty-like matrix Christara and Wu (2022)
and can in principle be solved by incorporating the Newton’s method.

3.4 Numerical results

After the transformation technique used for the Leland model, the semi-infinite prob-
lem in space is now truncated for numerical methods’ convenience as x ∈ [−6, 6].
The system of DAEs has been solved using Cubic-NURBS based on IGA in space
and utilizing the Rannacher start in time combined with the modified Crank-Nicolson
method. To compare two different methods fairly, the choice of ∆τ/h2 is adopted from
Wei et al. (2024). First test, when Le ≈ 0.8, a surface solution of the Leland model
demonstrates that Cubic-NURBS produces smooth and stable results for different
choices of temporal-spatial parameters, as shown in Figure 3.3. The numerical re-
sults for the ill-posed problem with extreme Le ≥ 1 are considered, even though they
lack meaning due to blow-up behavior. Indeed, the extreme case could be solved,
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but the presence of instability makes it useless. For comparison purposes, the ex-
treme values of Le are considered in Figure 3.4 to validate our numerical technique,
as referenced in the literature Wei et al. (2024).

Figure 3.1: Solution of the Leland’s model t = 0, r = 0.1, σ = 0.2, K̂ = $100,
Le ≈ 0.8. Left figure by Cubic-NURBS: ∆τ/h = 0.02, ∆τ/h2 = 0.8; Right figure by
Cubic-NURBS: ∆τ/h = 0.05, ∆τ/h2 = 0.1.

Figure 3.2: Solution of the Leland’s model t = 0, r = 0.1, σ = 0.2, K̂ = $100,
Le ≈ 0.8. Left figure by Cubic-NURBS: ∆τ/h = 0.02, ∆τ/h2 = 0.8; Right figure by
Cubic-NURBS: ∆τ/h = 0.05, ∆τ/h2 = 0.1.
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Figure 3.3: Solution of the Leland’s model t = 0, r = 0.1, σ = 0.2, K̂ = $100,
Le ≈ 0.8. Left figure by Cubic-NURBS: ∆τ/h = 0.02, ∆τ/h2 = 0.8; Right figure by
Cubic-NURBS: ∆τ/h = 0.05, ∆τ/h2 = 0.1.

In Figure 3.4, Cubic-NURBS describes the solution compared to P1-P2-FEM. P1-
FEM is a solution that is adopted as a reference solution. Cubic-NURBS converges to
P1-FEM solution, and FDM converges in Wei et al. (2024). When Le = 0.8 ≤ 1, the
problem is well-posed, and the level of nonlinearity is milder compared to the second
test for extreme Le = 1.33 ≥ 1 value when the problem is ill-posed. In the extreme
case, one could observe that the solution’s stability is controlled by proper temporal-
spatial ratio choices. Originally in Wei et al. (2024), the P2-FEM solution tends to
deviate from those by P1-FEM. However, this can be attributed to the nature of
partially negative basis functions of P2-FEM. P2-FEM(version-2) is a modified basis
function that is described in great detail Wei et al. (2024). While P1-FEM does
not suffer from being negative, it is comparable with the FDM reference solution.
Therefore, in Table 3.1, it can be easily seen how the L2 error estimates Amanbek
and Wheeler (2019); Amanbek et al. (2020) approaches zero as the ratio is maintained
during the refinement. Moreover, the convergence rate of Cubic-NURBS close to cubic
convergence is promising for nonlinear cases when Le = 0.8; this phenomenon was
expected since for linear problem Cubic-NURBS has converged with average cubic
convergence in Table 2.1. The framework under IGA-FEM is valid to be used for
nonlinear Black-Scholes PDEs, which has numerically justified to be consistent or
better in specific settings to conventional FEM or FDM approaches. Moreover, the
convergence result for the nonlinear model is highly remarkable since it has almost
inherited the results from the linear one. The difference of ∥ ûP1 − ûNU ∥L2 error
estimates at each refinement level is noted as, ∆NURBS and its ratio is noted as
Ratio.
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Figure 3.4: Solution of the Leland’s model t = 0, r = 0.1, σ = 0.2, K̂ = $100.
Left figure: Le ≈ 0.8, h = 0.0017, ∆τ = 0.0000007, therefore, ∆τ/h = 0.0004,
∆τ/h2 = 0.2; Right figure: Le ≈ 1.33, h = 0.05, ∆τ = 0.00025, therefore, ∆τ/h =
0.005,∆τ/h2 = 0.1.

3.4.1 Absolute stability region

Absolute stability region details are given in the Section 2.6. Based on accumulated
information, one can derive the absolute stability region and check if eigenvalues
meet the region’s requirement. For the Crank-Nicolson time-stepping methods for
nonlinear European call option problem with transaction costs, we have presented
the eigenvalues in Figire 3.5, which are crucial for the determination of the absolute
stability region. Moreover, one could see that for linear problems, there are no in-
stability issues that can be posed based on the absolute stability region for the time
integrator and depicted eigenvalues that belong to the same stability range. One
might observe that the eigenvalues are almost identical to the linear BS cases. This
might be justified by the tricky moment with the linearization, which requires the
equality of two consecutive time steps as in the section 3.3. It is important to note
that based on realistic parameters of the model, such as r, h, σ, θ, ∆τ , and Le the
eigenvalues meet the requirement of the absolute stability region, however, employing
an impractical set of parameters the instability may occur.

3.5 Greeks

In Figure 3.7, the nonlinear Leland case when Le = 0.8, all three Greek values are
computed at t = 0 and compared with Le = 0. The evolution of Greek values deviates
from those by linear call options, highlighting the effect of transaction costs. It can
be seen that Cubic-NURBS and P2-FEM exhibit smooth Delta values for nonlinear
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Figure 3.5: Absolute stability region of the time integration scheme for Crank-
Nicolson method, when θ = 1/2

Table 3.1: Solution of the Leland’s model t = 0, r = 0.1, σ = 0.2, K̂ = $100, Le ≈ 0.8
and ∆τ/h2 = 0.1 throughout the refinement (with Rannacher start).

nE nτ ∥ ûP1 − ûP2 ∥L2 ∥ ûP1 − ûNU ∥L2 ∆NU Ratio
28 80 5.424767 0.451445 - -
29 320 7.749684 0.157192 0.294253 2.87
210 1280 10.932378 0.050986 0.106206 3.08
211 5120 15.831059 0.017970 0.033016 2.83
212 20480 22.569910 0.006319 0.011651 2.84

cases. Even though the perfect similarity can not be expected as the price of P2-FEM
deviates from the reference P1-FEM and Cubic-NURBS solutions as it was shown in
Figure 3.4. However, the case with Delta is way clearer and simpler for P2-FEM than
second-order Gamma values. Gamma has precisely shown how P2-FEM can produce
shocks around the strike price K̂ = 100$, which could not be avoided even for really
fine temporal-spatial grid size.

The most common practice for the computation of Greek alphabets is FDM.
Indeed, FDM serves as a fast and robust computation for pricing problems and Greeks.
Since numerical results were generated by IGA-NURBS, the usage of FDM will create
another source of error as the nature of the two methodologies is totally different. To
maintain the consistency, corresponding Greek values are calculated by IGA-NURBS
and P2-FEM for comparison. Once the solutions are generated by IGA-NURBS, one
could apply the post-processing algorithm to investigate the character of the contract
value according to variable quantities. Note that the cubic-NURBS is at least twice
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differentiable, which suffices to compute the Gamma by twice differentiable basis
functions. Initially, our IGA-NURBS approximation is given as:

Uh =
n∑

i=1

uiRi,

corresponding derivatives:
∂Uh

∂x
=

n∑
i=1

ui
∂Ri

∂x

∂2Uh

∂x2
=

n∑
i=1

ui
∂2Ri

∂x2

The first step is to compute the NURBS basis functions and their derivatives at Gaus-
sian points. Secondly, we do use the above expressions to compute the corresponding
first and second-order derivatives, utilizing the same assembling process approach as
the one used for assembling the local to global element matrices.

Figure 3.6: Greeks for European call option with the parameters t = 0, r = 0.1,
rc = 0.02, σ = 0.2, K̂ = $100. For Cubic-NURBS: nE = 212, nτ = 20000; For P2-
FEM: nE = 211, nτ = 20000; Left figure: Delta ∆; Right figure: Gamma Γ; Middle
figure: Theta Θ.
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For each particular quantity, a corresponding back-transformation shall be applied

to obtain ∆ =
∂U

∂S
and Γ =

∂2U

∂S2
. Theta Θ =

∂U

∂t
values could be computed via FDM,

however, to maintain the consistency, we retrieved its values from governing Black-
Scholes PDEs for each contract, since the numerical solution, Delta and Gamma are
known at current stage. Note that the Greeks by P2-FEM are calculated through
derived explicit formulas in the previous work Kazbek et al. (2024).

For example, the linear European call option case (Le = 0) is considered to track
the character of IGA-NURBS and P2-FEM versus available exact valued Greeks. In
Figure 3.6, the exact values for the linear call option are comparable with those by
Cubic-NURBS or P2-FEM, without having any spikes or shocks in all three cases.

In Figure 3.7, the nonlinear Leland case when Le = 0.8, all three Greek values are
computed at t = 0 and compared with Le = 0. The evolution of Greek values deviates
from those of linear call options, highlighting the effect of transaction costs. It can
be seen that Cubic-NURBS and P2-FEM exhibit smooth Delta values for nonlinear
cases. Even though almost identical sameness can not be expected as the price of
P2-FEM deviates from the reference P1-FEM and Cubic-NURBS solutions as it was
shown in Figure 3.4. However, the case with Delta is way clearer and simpler for
P2-FEM than second-order Gamma values. In Gamma, it has precisely shown how
P2-FEM can produce shocks around the strike price K̂ = 100$, which could not be
avoided even for really fine temporal-spatial grid size.
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Figure 3.7: Greeks for Leland model with t = 0, r = 0.1, σ = 0.2, K̂ = $100, Le ≈ 0.8.
For NURBS: h = 0.005, ∆τ = 10−6, therefore, ∆τ/h = 0.0001, ∆τ/h2 = 0.02; For
P2-FEM: h = 0.013, ∆τ = 5∗10−7, therefore, ∆τ/h = 3.6∗10−5, ∆τ/h2 = 0.02. Left
figure: Delta ∆; Right figure: Gamma Γ; Middle figure: Theta Θ.

Whereas, Cubic-NURBS results for Gamma led to a smoother curve with no shocks.
Theta inherits the behavior of Gamma for P2-FEM, and Cubic-NURBS performed
a smoother curve again. As it can be concluded from numerical tests, the quality
of Cubic-NURBS approximation is demonstrated via simulations superior to higher-
order Greeks.
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Figure 3.8: Greeks for Leland model with t = 0, r = 0.1, σ = 0.2, K̂ = $100,
Le ≈ 0.8, h = 0.0017, ∆τ = 0.0000007, therefore, ∆τ/h = 0.0004, ∆τ/h2 = 0.2. Left
figure: Delta ∆; Right figure: Gamma Γ; Middle figure: Theta Θ.
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Chapter 4

TF model for Convertible bonds

4.1 Introduction

A convertible bond (CB) is one of the first generations of financial derivatives; it
originates from the 19th century, today, the role of convertible bonds is crucial in the
derivative market Hull (2014); Jan De Spiegeleer (2011).

CB is a financial security mostly associated with fixed-income instruments as it
suggests the holder has lower risk by provides coupon payments, dividends, and more
profit if the exercise time is chosen correctly. CB contract normally involves three
inequality constraints such as callability, puttability, and conversion, note that CB
is an American-style contract since it can be exercised at any time. Callability gives
a right the issuer to call the bond back under prescribed conditions in the contract;
puttability offers flexibility to the holder to put it back to the issuing company de-
pending on the behavior of the underlying asset. By conversion the holder decides to
convert the bond to the stock. Puttability and callability are quite specific types of
action if compared with more traditional options. Nevertheless, it inherits conversion
possibility, which is analog to the call option. Pricing CBs is a sophisticated task
because of its always varying time-dependent parameters, such as three constraints
and their components. In literature, convertible bond pricing papers are not widely
developed. However, one of them is tree methods (e.g., in Milanov and Kounchev
(2012)), Monte-Carlo simulation (e.g., Ammann et al. (2008)) for the expected value
of the stochastic differential equation, and partial differential equations approach are
among the widely used techniques in the literature.

One of the pioneering work using PDE modelling for CB pricing is due to Inger-
soll Ingersoll (1977), who developed a method for the determination of the optimal
conversion and call policies for convertible securities using Black-Scholes Black and
Scholes (1973) methodology. Brennan and Schwartz Brennan and Schwartz (1977)
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extended Ingersoll’s model to incorporate callability and dividend payments. They
later improved by using stochastic interest rate, resulting in a two-factor model for
CB pricing with callability and conversion strategies Brennan and Schwartz (1980).
In the late 1990s, Tsiveriotis and Fernandes Tsiveriotis (1998) proposed an innovative
model based on the system of two PDEs for pricing CBs under callability, puttabil-
ity and conversion provisions with hypothetical cash-only convertible bond (COCB)
part, known as the TF model. Another model for pricing CBs with credit risk and
default strategy was developed by Ayache et al. Ayache et al. (2003) based on a sys-
tem of triple PDEs. Barone-Adesi et al. are used characteristics/finite elements to
handle multi-factors with stochastic interest rate based on Hull and White framework
oriented for practical usage Barone-Adesi et al. (2003). Two-dimensional problems
was solved and analyzed using bilinear finite element methods for pricing CBs by De
Frutos de Frutos (2005). The pricing model with stochastic interest rate is handled
by ADI FDM in Lin and Zhu (2020), are adjusted pricing CB by stochastic stock
price, volatility, and interest rate. Default density using finite element method Ko-
valov and Linetsky (2008) with adaptive time integrator, so-called SUNDIALS that
involves solving partial differential equations with inequality constraints and varying
parameters. In Zhu et al. (2018), authors have implemented an integral approach for
solving the puttable convertible bonds.

Because of their complexity, the TF and AFV models must be solved numeri-
cally. Due to their simplicity, FDM have become a popular numerical method in
computational finance. In computational bond pricing, the authors of Brennan and
Schwartz (1977, 1980); Tsiveriotis (1998) use FDM to solve their proposed model.
It was noted that FEM performed comparably to FDM and suggested using it for
nonlinear Black-Scholes problems. To improve the accuracy in the finite difference
method, the order of approximation has to be increased, which entails trouble by ex-
ceeding left and right boundaries; therefore, corresponding exceeding nodes can not
be evaluated. The accuracy can be improved in the finite element method by choos-
ing higher-order approximation in the form of polynomials. However, the motivation
for using the FEM comes from its advantage to converge using lesser DOFs and the
capability of conducting the adaptive mesh generation, which in FDM has to be done
by smooth-mapping functions Christara and Wu (2022).

In this chapter, we discuss the numerical solutions of the TF model for CB pricing
with credit risk and without dividends by implementing the finite element method
with penalty and P1 and P2 elements, respectively. In our previous work by Kazbek
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et al. (2024), pricing the convertible bonds by TF model Tsiveriotis (1998) was nu-
merically solved by P1-P2 finite elements. This chapter based on Kazbek et al. (2024)
presents the following contributions:

1. To the best of our knowledge, we presented and expanded the existing literature
on the numerical solution of the TF model by FEM subject to credit spread
paying coupon payments.

2. The methodology presented by FEM can easily be extended to other American
type of contracts.

3. nonlinear PDE consisting of two penalty terms was discretized by employing
P1 and P2 FEM utilizing the group FEM.

4. We present the technique of handling the nonlinear doubled penalty terms by
FEM, which entailed the advantage of faster convergence than FDM.

5. Post-processing Greek values using FE basis functions are compared with stan-
dard FDM values.

The TF model for convertible bond pricing is based on the system of partial differential
equations (PDEs)

∂U

∂t
+
σ2

2
S2∂

2U

∂S2
+ rgS

∂U

∂S
− r(U − V )− (r + rc)V = 0, (4.1.1)

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rgS

∂V

∂S
− (r + rc)V = 0, (4.1.2)

for the time t ∈ (0, T ) and the underlying stock price S ∈ (0,∞), with U being the
value of the CB, V the value of hypothetical COCB, r the risk-free rate, rg the growth
rate, which can be counted as risk-free rate r (see Hull (2014)), rc the credit spread
reflecting payoff default risk, σ be volatility, and T the maturity time.

The terminal condition at the maturity time T means that no one can call or
put it back once the CB expires. The holder of the CB will get as much as possible,
depending on the conversion ratio k and stock price. There is, however a minimum
based on the face value F and the coupon paymentK, yielding the terminal condition:

U(S, T ) =

{
F +K, if F +K ≥ kS,

kS, otherwise,
(4.1.3)

and

V (S, T ) =

{
F +K, if F +K ≥ kS,

0, otherwise.
(4.1.4)
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Throughout its lifetime, however, the CB can be converted to the underlying stock at
the value kS, and the issuer should pay the principal value F +K to the holder if the
issuer has not converted until maturity time. These rights lead to three conditions
that constrain the CB price:

1. Upside constraint due to conversion of bonds: for t ∈ [0, T ],

U(S, t) ≥ kS, (4.1.5)

V (S, t) = 0 if U(S, t) ≤ kS; (4.1.6)

2. Upside constraint due to callability with the call price Bcall: for t ∈ [Tcall, T ],
with Tcall the earliest time the bond issuer is allowed to call back the bond,

U(S, t) ≤ max(Bcall(t), kS), (4.1.7)

V (S, t) = 0 if U(S, t) ≥ Bcall(t); (4.1.8)

3. Downside constraint due to puttability with the put price Bput: for t ∈ [Tput, T ],
with Tput the earliest time the investor is allowed to put the bond back,

U(S, t) ≥ Bput(t), (4.1.9)

V (S, t) = Bput(t) if U(S, t) ≤ Bput(t). (4.1.10)

Following Ayache et al. (2003), the call and put price in the callability and puttability
constraints include the effect of future coupon payment and the underlying interest
as follows. Let Tcoupon = {ti}, the set of the coupon payment time, with 0 < ti−1 <

ti ≤ T . Then,

Bput,call(t) = Bcl
put,call + AccI(t), (4.1.11)

where

AccI(t) = Ki
t− ti−1

ti − ti−1

, (4.1.12)

the accrued interest at any time t between the time of the last coupon payment
ti−1 and the time of the next (pending) coupon payment ti. Note that the con-
straints (4.1.5) and (4.1.9) can be combined to U(S, t) ≥ max{Bput, kS}. In this way,
the constraints for U can be rewritten as

U(S, t) ≤ max(Bcall(t), kS), (4.1.13)

U(S, t) ≥ max(Bput(t), kS), (4.1.14)
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with

Bcall(t) =

{
Bcl

call + AccI(t), if t ∈ [Tcall, T ],

+∞, otherwise,
(4.1.15)

Bput(t) =

{
Bcl

put + AccI(t), if t ∈ [Tput, T ],

0, otherwise.
(4.1.16)

Two boundary conditions need to be supplemented to the PDEs (5.1.19) and (4.1.2).
At S = 0, the PDEs are reduced to

∂U(0, t)

∂t
= rU(0, t) + rcV (0, t), (4.1.17)

and

∂V (0, t)

∂t
= (r + rc)V (0, t), (4.1.18)

with the terminal conditions U(0, T ) = V (0, T ) = F + K (see Eqs. (5.1.22) and
(5.1.23)). The other boundary condition is associated with the situation when the
stock price S increases unboundedly, under which the CB is converted into stock.
Therefore,

lim
S→∞

{
U(S, t) = kS,

V (S, t) = 0.
(4.1.19)

After spatial discretization using, for instance, FDM or FEM, the initial-boundary
value problems (IBVP) with constraints given by (5.1.19)–(5.1.50) can be solved by
using a time-integration method, such as Crank-Nicolson, in combination with pro-
jected SSOR (PSSOR) method to tackle the nonlinearity. However, we shall consider
a formulation of the above-stated IBVP in a penalty PDE to explicitly include some
constraints in the PDEs and apply FEM and Crank-Nicolson method on the resulting
penalty PDE.

4.2 The transformed TF model

The standard procedure for solving the Black-Scholes-type PDEs requires a transfor-
mation of the terminal-boundary value problem to an initial-boundary value problem,
for which many numerical methods can be devised. Let τ = T −t and x = ln (S/Sint),
where Sint is the stock price at the initial time t = 0. With this change of variables,
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it can be shown that the PDEs (5.1.19)–(4.1.2) are transformed to

∂U

∂τ
=
σ2

2

∂2U

∂x2
+

(
r − σ2

2

)
∂U

∂x
− r(U − V )− (r + rc)V, (4.2.1)

∂V

∂τ
=
σ2

2

∂2V

∂x2
+

(
r − σ2

2

)
∂V

∂x
− (r + rc)V, (4.2.2)

with (τ, x) ∈ (0, T )× (−∞,∞). The terminal conditions at t = T now become initial
conditions at τ = 0, given by

U(x, 0) =

{
F +K, if F +K ≥ kSinte

x,

kSinte
x , otherwise,

(4.2.3)

and

V (x, 0) =

{
F +K, if F +K ≥ kSinte

x,

0, otherwise.
(4.2.4)

Furthermore, the constraints for U are transformed into

U(x, τ) ≥ max{Bput(τ), kSinte
x} =: U⋆

put(τ), (4.2.5)

U(x, τ) ≤ max{Bcall(τ), kSinte
x} =: U⋆

call(τ), (4.2.6)

where

Bcall(τ) =

{
Bcl

call + AccI(τ), if t ∈ [0, τcall],

+∞, otherwise,
(4.2.7)

and

Bput(τ) =

{
Bcl

put + AccI(τ), if t ∈ [0, τput],

0, otherwise,
(4.2.8)

with τput,call = T − Tput,call and, for τi ∈ Tτ,coupon = Tcoupon,

Bput,call(τ) = Bcl
put,call +Ki

τ − τi−1

τi − τi−1

. (4.2.9)

The constraints for V now read

1. for τ ∈ [0, T ],

V (x, τ) = 0, if U(τ) ≤ kSinte
x, (4.2.10)

2. for τ ∈ [0, τcall],

V (x, τ) = 0, if U(τ) ≥ Bcall(τ) (4.2.11)
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3. for τ ∈ [0, τput],

V (x, τ) = Bput, if U(τ) ≤ Bput(τ). (4.2.12)

We note here that x is not defined at S = 0 for the boundary conditions. As
in the actual numerical computation, we set S as close as possible to 0; we assume
that (5.1.49) also holds at the proximity of S = 0, which corresponds to xmin → −∞
in the x-space. This results in the boundary conditions at xmin

∂U(xmin, τ)

∂τ
= −rU(xmin, τ)− rcV (xmin, τ), (4.2.13)

∂V (xmin, τ)

∂t
= −(r + rc)V (xmin, τ). (4.2.14)

Transformation of the boundary conditions at S → +∞ is: at xmax → +∞,

U(xmax, τ) = kSinte
xmax , (4.2.15)

V (xmax, τ) = 0. (4.2.16)

As stated in Section 4.1, we focus on the penalty TF model. We, therefore,
need to reformulate the model into a PDE model with penalty terms associated with
some constraints. In particular, as in practice, we are mainly concerned with the
CB price U , not V , we shall reformulate the CB PDE (5.1.35) with the associated
constraints (4.2.5) and (4.2.6) into a penalty PDE. To this end, note that the linear
complementarity problem (LCP) for (5.1.35) with constraints (4.2.5) and (4.2.6) is
given by (Ayache et al., 2003) LU − rcV = 0

U ≥ max(Bp, κSinte
x)

U ≤ max(Bc, κSinte
x)

∨
 LU − rcV ≤ 0

U = max(Bp, κSinte
x)

U ≤ max(Bc, κSinte
x)

∨
 LU − rcV ≥ 0

U ≥ max(Bp, κSinte
x)

U = max(Bc, κSinte
x)

 ,

(4.2.17)

where L = − ∂

∂τ
+
σ2

2

∂2

∂x2
+

(
r − σ2

2

)
∂

∂x
− r.

The penalty PDE Forsyth and Vetzal (2002) for the bond valuation can be con-
structed from the LCP (4.2.17):

∂U

∂τ
=
σ2

2

∂2U

∂x2
+

(
r − σ2

2

)
∂U

∂x
− rU − rcV + ρmax(U − U⋆

call, 0) + ρmax(U⋆
put − U, 0),

where ρ > 0 is the penalty parameter, typically set very large. By rewriting max(U −
U⋆
call, 0) = αcall(U − U⋆

call) and max(U⋆
put − U, 0) = αput(U − U⋆

put), with

αcall =

{
1, if U − U⋆

call ≥ 0,

0, otherwise,
and αput =

{
1, if U⋆

put − U ≥ 0,

0, otherwise,
(4.2.18)
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the CB PDE can be reformulated into

∂U

∂τ
=
σ2

2

∂2U

∂x2
+ (r − σ2

2
)
∂U

∂x
− rU − rcV

+ ραcall(U − U⋆
call) + ραput(U

⋆
put − U). (4.2.19)

4.3 Finite element method

In this section, we construct finite-element methods to approximately discretize the
penalty CB PDE (5.1.51) and the COCB PDE (5.1.36) in the transformed TF model.
To apply finite element spatial discretization to the PDEs, the domain (0,∞) is
approximated by the bounded domain Ω = (xmin, xmax) in the following:

Suppose that the solution of the bond PDEs are functions of the following class:

U(x, τ), V (x, τ) ∈ S =
{
f
∣∣f ∈ H1(Ω), f

∣∣
ΓD

= g
}
.

Consider two test functions w, z ∈ V =

{
f̂
∣∣∣f̂ ∈ H1(Ω), f̂

∣∣∣
ΓD

= 0

}
. The weak formu-

lation of the penalty PDE (5.1.51) and (5.1.36) reads∫
Ω

w
∂U

∂τ
=
σ2

2

∫
Ω

w
∂2U

∂x2
+

(
r − σ2

2

)∫
Ω

w
∂U

∂x
− r

∫
Ω

wU − rc
∫
Ω

wV

− ρ
∫
Ω

αcallw(U − U⋆
call) + ρ

∫
Ω

αputw(U
⋆
put − U),∫

Ω

z
∂V

∂τ
=
σ2

2

∫
Ω

z
∂2V

∂x2
+

(
r − σ2

2

)∫
Ω

z
∂V

∂x
− (r + rc)

∫
Ω

zV,

where the integration is carried out along the x-direction (dx is not indicated to save
space). Integration by parts and applying the vanishing property of the function w

and z at the boundary results in the weak formulation

∂

∂τ

∫
Ω

wU = −σ
2

2

∫
Ω

∂w

∂x

∂U

∂x
−
(
r − σ2

2

)∫
Ω

∂w

∂x
U − r

∫
Ω

wU − rc
∫
Ω

wV

− ρ
∫
Ω

αcallw(U − U⋆
call) + ρ

∫
Ω

αputw(U
⋆
put − U),

∂

∂τ

∫
Ω

zV = −σ
2

2

∫
Ω

∂z

∂x

∂V

∂x
−
(
r − σ2

2

)∫
Ω

∂z

∂x
V − (r + rc)

∫
Ω

zV.
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To build our finite-element approximation, we consider the finite-dimensional sub-
space Sh

0 ⊂ H1
0, spanned by the basis {ψ1, ψ2, . . . , ψn}. The finite-element approxi-

mation to the solution U is the function

Uh =
n∑

i=1

uiψi +
∑
i∈I∂

uiψi ≃ U, ui ∈ R,

where ψi∈I∂ are additional functions needed to interpolate the given solutions at the
boundaries. A similar form of approximation to V is devised, namely

Vh =
n∑

i=1

viψi +
∑
i∈I∂

viψi ≃ V, vi ∈ R.

The use of the above approximations results in the weak formulation in the finite-
dimensional space:

∂

∂τ

 n∑
i=1

ui

∫
Ω

wψi +
∑
i∈I∂

ui

∫
Ω

wψi

 = −σ
2

2

 n∑
i=1

ui

∫
Ω

∂w

∂x

∂ψi

∂x
+
∑
i∈I∂

ui

∫
Ω

∂w

∂x

∂ψi

∂x


−
(
r − σ2

2

) n∑
i=1

ui

∫
Ω

∂w

∂x
ψi +

n∑
i∈I∂

ui

∫
Ω

∂w

∂x
ψi


− r

 n∑
i=1

ui

∫
Ω

wψi +
∑
i∈I∂

ui

∫
Ω

wψi


− rc

 n∑
i=1

vi

∫
Ω

wψi +
∑
i∈I∂

vi

∫
Ω

wψi


− Pcall + Pput,

(4.3.1)

where Pcall = ρ

∫
Ω

αcallw (U − U⋆
call) dx and Pput = ρ

∫
Ω

αputw
(
U⋆
put − U

)
dx, and

∂

∂τ

 n∑
i=1

vi

∫
Ω

zψi +
∑
i∈I∂

vi

∫
Ω

zψi

 = −σ
2

2

 n∑
i=1

vi

∫
Ω

∂z

∂x

∂ψi

∂x
+
∑
i∈I∂

vi

∫
Ω

∂z

∂x

∂ψi

∂x


−
(
r − σ2

2

) n∑
i=1

vi

∫
Ω

∂z

∂x
ψi +

n∑
i∈I∂

vi

∫
Ω

∂z

∂x
ψi


− (r + rc)

 n∑
i=1

vi

∫
Ω

zψi +
∑
i∈I∂

vi

∫
Ω

zψi

 .

(4.3.2)
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In the Galerkin method (Kythe and Wei, 2004), the test functions w and z are
chosen to coincide with the basis function ψi. Imposing this condition for w, z = ψj,
j = 1, . . . , n results in the system of equations

∂

∂τ

 n∑
i=1

ui

∫
Ω

ψjψi +
∑
i∈I∂

ui

∫
Ω

ψjψi

 = −σ
2

2

 n∑
i=1

ui

∫
Ω

∂ψj

∂x

∂ψi

∂x
+
∑
i∈I∂

ui

∫
Ω

∂ψj

∂x

∂ψi

∂x


−
(
r − σ2

2

) n∑
i=1

ui

∫
Ω

∂ψj

∂x
ψi +

n∑
i∈I∂

ui

∫
Ω

∂ψj

∂x
ψi


− r

 n∑
i=1

ui

∫
Ω

ψjψi +
∑
i∈I∂

ui

∫
Ω

ψjψi


− rc

 n∑
i=1

vi

∫
Ω

ψjψi +
∑
i∈I∂

vi

∫
Ω

ψjψi


− Pcall,j + Pput,j,

(4.3.3)
where Pcall,j is Pcall with w be replaced by ψj and similarly for Pput,j, and

∂

∂τ

 n∑
i=1

vi

∫
Ω

ψjψi +
∑
i∈I∂

vi

∫
Ω

ψjψi

 = −σ
2

2

 n∑
i=1

vi

∫
Ω

∂ψj

∂x

∂ψi

∂x
+
∑
i∈I∂

vi

∫
Ω

∂ψj

∂x

∂ψi

∂x


−
(
r − σ2

2

) n∑
i=1

vi

∫
Ω

∂ψj

∂x
ψi +

n∑
i∈I∂

vi

∫
Ω

∂ψj

∂x
ψi


− (r + rc)

 n∑
i=1

vi

∫
Ω

ψjψi +
∑
i∈I∂

vi

∫
Ω

ψjψi

 .

(4.3.4)
In practice, systems of equations (5.2.4) and (5.2.6) are constructed via an assembly
process using (local) element matrices, whose structures depend on the choice of the
basis functions ψi. The common choice for the basis functions is a class of functions
satisfying the nodal condition,

ψi(xj) =

{
1, i = j,

0, otherwise,
(4.3.5)

where xj is the nodal point. This choice leads to global systems of linear equations
with sparse and banded coefficient matrices.
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4.3.1 Treating the constraints by Penalty method

We now turn to the two nonlinear penalty terms in (5.1.51) and construct a finite-
element approximation to them. We, in particular, apply group finite element (Fletcher,
1983) to deal with the nonlinearity. We shall discuss the construction for Pcall,j; con-
struction of finite element approximation for Pput,j is done in the same way.

We assume that the term ζcall := αcall(U − U⋆
call) is approximated by

ζcall =
n∑

i=1

ζiψi +
∑
I∂

ζiψi,

where ζcall,i = αcall(xi)(U(xi)−U⋆
call(xi)) =: αcall,i(ui− u⋆call,i). Therefore, for w = ψj,

j = 1, . . . , n, we have

Pcall,j = ρ

∫
Ω

ψj

(
n∑

i=1

ζiψi +
∑
I∂

ζiψi

)
dx = ρ

 n∑
i=1

ζi

∫
Ω

ψjψidx+
∑
I∂

ζi

∫
Ω

ψjψidx


= ρ

 n∑
i=1

αcall,i(ui − u⋆call,i)
∫
Ω

ψjψidx+
∑
I∂

αcall,i(ui − u⋆call,i)
∫
Ω

ψjψidx

 .

(4.3.6)

Each integral in the above equation is evaluated element-wise, resulting in the local
element matrices Mj, Kj, and Nj, given in Sections 3.1 and 3.2.

By using the same argument,

Pput,j = ρ

 n∑
i=1

αput,i(ui − u⋆put,i)
∫
Ω

ψjψidx+
∑
I∂

αput,i(ui − u⋆put,i)
∫
Ω

ψjψidx

 .

(4.3.7)

4.4 Time integration scheme

The global finite-element system obtained from assembling the local finite-element
matrices can be represented by the differential algebraic equations (DAEs):

∂

∂τ
(Mu+ b̂M,u) = −

σ2

2
Ku−

(
r − σ2

2

)
Nu− rMu− rcMv − β1(u,v)

+ ρMPput(u
⋆
put − u)− ρMPcall(u− u⋆

call)

+ ρbput − ρbcall := F1(u,v), (4.4.1)
∂

∂τ
(Mv + b̂M,v) = −

σ2

2
Kv −

(
r − σ2

2

)
Nv − (r + rc)Mv − β2(v) := F2(v),

(4.4.2)
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where Pput = diag(αput,j), Pcall = diag(αcall,j), and

β1(u,v) =
σ2

2
bK,u +

(
r − σ2

2

)
bN,u + rbM,u + rcbM,v, (4.4.3)

β2(v) =
σ2

2
bK,v +

(
r − σ2

2

)
bN,v + (r + rc)bM,v, (4.4.4)

are the boundary condition vectors.
Time integration of the DAEs (5.3.1) and (5.3.2) is carried out by applying the

θ-scheme on both equations, which results in the systems, with θ ∈ [0, 1], ∆τ = T/nτ ,
and nτ the number of time steps,

Mum+1 + b̂
m+1

M,u −Mum − b̂
m

M,u = θ∆τF1(u
m+1,vm+1) + (1− θ)∆τF1(u

m,vm),

Mvm+1 + b̂
m+1

M,v −Mvm − b̂
m

M,v = θ∆τF2(v
m+1) + (1− θ)∆τF2(v

m),

or

A11u
m+1 + A12v

m+1 − ρθ∆τM
(
Pm+1
put (u⋆,m+1

put − um+1)− Pm+1
call (um+1 − u⋆,m+1

call )
)

= Ã11u
m + Ã12v

m + ρ(1− θ)∆τM
(
Pm
put(u

⋆,m
put − um)− Pm

call(u
m − u⋆,m

call)
)

+ θ∆τβm+1
1 + (1− θ)∆τβm

1 + b̂
m

M,u − b̂
m+1

M,u + θρ∆τ(bm+1
put − bm+1

call )

+ (1− θ)ρ∆τ(bmput − bmcall), (4.4.5)

A22v
m+1 = Ã22v

m + θ∆τβm+1
2 + (1− θ)∆τβm

2 + b̂
m

M,v − b̂
m+1

M,v , (4.4.6)

where

A11 =M + θ∆τ

(
σ2

2
K +

(
r − σ2

2

)
N + rM

)
,

A12 = θ∆τrcM,

A22 =M + θ∆τ

(
σ2

2
K +

(
r − σ2

2

)
N + (r + rc)M

)
Ã11 =M − (1− θ)∆τ

(
σ2

2
K +

(
r − σ2

2

)
N + rM

)
,

Ã12 = −(1− θ)∆τrcM,

Ã22 =M − (1− θ)∆τ
(
σ2

2
K +

(
r − σ2

2

)
N + (r + rc)M

)
.

Let the solutions um and vm be known. The solutions at the next time level m+1

can, in principle, be computed by first solving (5.3.8) for vm+1. The solution um+1

is then computed via (5.3.7) using the known um, vm, and vm+1. This procedure,
however, requires knowledge of the solutions at the boundaries at the time level m+1.
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4.4.1 Boundary solutions

At xmin, with u0(τ) := U(xmin, τ), v0(τ) := V (xmin, τ), etc, the boundary conditions
with penalty in U can be written as follows:

∂u0(τ)

∂τ
= −ru0(τ)− rcv0(τ)
−ρmax

(
u0(τ)− u⋆call,0(τ), 0

)
+ ρmax

(
u⋆put,0(τ)− u0(τ), 0

)
,

∂v0(τ)

∂t
= −(r + rc)v0(τ).

(4.4.7)

Note that max
(
u0(τ)− u⋆call,0(τ), 0

)
= pcall,0(τ)(u0(τ)− u⋆call,0(τ)), with

pcall,0 =

{
1, if u0(τ) > u⋆call,0(τ),

0, otherwise,

and max
(
u⋆put,0(τ)− u0(τ), 0

)
= pput,0(τ)(u

⋆
put,0(τ)− u0(τ)), with

pput,0 =

{
1, if u0(τ) < u⋆put,0(τ),

0, otherwise.

Application of the θ-scheme on (5.3.10) leads to the discrete equations:

um+1
0 + θ∆τ(rum+1

0 +rcv
m+1
0 + ρ(pm+1

call,0(u
m+1
0 − u⋆,m+1

call,0 )− pm+1
put (u⋆,m+1

put,0 − um+1
0 )))

= um0 − (1− θ)∆τ(rum0 + rcv
m
0

+ ρ(pmcall,0(u
m
0 − u

⋆,m
call,0)− p

m
put(u

⋆,m
put,0 − um0 ))), (4.4.8)

[1 + θ∆τ(r + rc)] v
m+1
0 = [1− (1− θ)∆τ(r + rc)]v

m
0 . (4.4.9)

Let the boundary solution vm0 be known. Then vm+1
0 can be computed from (5.3.12).

With um0 , vm0 , and vm+1
0 now known, (5.3.11) becomes a nonlinear function of um+1

0 ,
which can be solved approximately using Newton’s method. Assume that the penalty
term in (5.3.11) is approximated in a fully implicit way at the new time level m+ 1.
This results in the equation

0 = (1 + θ∆τr)um+1
0 +∆τρ(pm+1

call,0(u
m+1
0 − u⋆,m+1

call,0 )− pm+1
put (u⋆,m+1

put,0 − um+1
0 ))

− ϕ0 =: f(um+1
0 ), (4.4.10)

where
ϕ0 = um0 − (1− θ)∆τ (rum0 + rcv

m
0 )− θ∆τrcvm+1

0 .

With

f ′(um+1
0 ) = 1 + θ∆τr +∆τρ

(
pm+1
call,0 + pm+1

put,0

)
, (4.4.11)
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Newton’s method for finding um+1
0 satisfying (4.4.10) can be written as follows: with

an initial guess um+1,0
0 , compute um+1,k

0 = um+1,k−1
0 − f(um+1,k−1

0 )/f ′(um+1,k−1
0 ), for

k = 1, 2, . . . .
um+1,0
0 is chosen to be the solution of the unconstrained boundary problem given

by (5.1.49). Since we expect that um+1,0
0 computed in this way is a better approxima-

tion than, e.g., um0 , we can also use this value to evaluate the conditions to constraint
v.

The complete algorithm for computing um+1
0 and vm+1

0 is as follows:

Algorithm 1 Computing the boundary solutions
Input: input um0 , vm0 ;
1: compute Bp(τ

m+1) and Bc(τ
m+1);

2: compute vm+1
0 from (5.3.12);

3: compute um+1
0 from (5.3.11) without penalty terms;

4: apply constraints on vm+1
0 using um+1

0 ;
5: set um+1,0

0 ← um+1
0 ;

6: for k = 1, 2, . . . until convergence do
7: compute f(um+1,k−1

0 ) using (4.4.10);
8: compute f ′(um+1,k−1

0 ) using (4.4.11);
9: um+1,k

0 ← um+1,k−1
0 − f(um+1,k−1

0 )/f ′(um+1,k−1
0 );

10: end for
11: apply constraints on vm+1

0 using um+1,k
0 ;

12: if τm+1 ∈ Tcoupon then
13: um+1

0 ← um+1
0 +K;

14: vm+1
0 ← vm+1

0 +K;
15: end if

At xmax we need to compute um+1
n+1 := U(xmax, τ

m+1) and vm+1
n+1 := V (xmax, τ

m+1)

via (5.1.50), apply the constraints, and pay the coupon if τm+1 ∈ Tcoupon.
We remark here that the solution of Newton’s method exists if the derivative

f ′(um0 ) ̸= 0. This condition, however, cannot be theoretically guaranteed. In this
regard, for the tuple (pmcall,0, p

m
put,0) ∈ {0, 1}2 and nonnegative θ, ∆τ , ρ, and r,

1. if pcall,0 = pput,0, then f ′(um0 ) = 1 + θ∆τr > 0;

2. if pcall,0 ̸= pput,0, we have two situations:

(a) if pcall,0 = 1 and pput,0 = 0, then f ′(um0 ) = 1 + ∆τ(θr + ρ) > 0;

(b) if pcall,0 = 0 and pput,0 = 1, then f ′(um0 ) = 1 + ∆τ(θr − ρ) = 0 if ∆τ =

1/(ρ− θr).
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Since the penalty parameter ρ is taken large (e.g., ρ = 106), vanishing f ′ is very
unlikely to happen under a reasonable choice of the time step ∆τ . For instance,
using the simulation parameters in Table 5.1 in Section 4.5, the vanishing f ′ situation
outlined in Point 2(b) above may occur if ∆τ is chosen to be in the order of ρ−1 = 10−6,
which makes the time-integration process extremely impractical.

4.4.2 Interior solutions

With solutions at the boundaries available at τm and τm+1, all related boundary vec-
tors in (5.3.7) and (5.3.8) are known. We are thus now able to compute the solutions
um+1 and vm+1. vm+1 is readily computed from (5.3.8). With vm+1 known, (5.3.7)
reduces to a nonlinear function of um+1. As we do for the boundary equations, we
assume that the penalty terms in (5.3.8) are approximated in a fully implicit way,
resulting in the equation

0 = A11u
m+1 − ρ∆τM

(
Pm+1
put (u⋆,m+1

put − um+1) + Pm+1
call (um+1 − u⋆,m+1

call )
)

−ϕ := f(um+1), (4.4.12)

where

ϕ = Ã11u
m + Ã12v

m − A12v
m+1 + θ∆τβm+1

1 + (1− θ)∆τβm
1 + b̂

m

M,u − b̂
m+1

M,u

+θ∆τ(bm+1
put + bm+1

call ). (4.4.13)

The nonlinear equation (5.3.14) is solved iteratively using Newton’s method.
Starting from an initial guess of the solution um+1,0, the solution um+1 is approx-
imated using the iterands

um+1,k ← um+1,k−1 −
(
∇f(um+1,k−1)

)−1
f(um+1,k−1), k = 1, 2, . . .

where ∇f(um+1,k−1) is the Jacobian of f , given by

∇f(um+1,k−1) = A11 + ρ∆τM
(
Pm+1,k−1
call − Pm+1,k−1

put

)
. (4.4.14)

The initial guess um+1,0 is chosen such that it solves unconstrained CB PDE, which
is equivalent to solving (5.3.7) without penalty terms. We shall also use this uncon-
strained solution um+1,0 to constrain the initially computed vm+1 prior to the start
of Newton’s iterations. In the context of American-style derivatives, the convertible
bond problem refers to the stopping criteria used to terminate computations to con-
serve computational resources. As in (Forsyth and Vetzal, 2002), the first typical cri-
teria is the difference of two consecutive solution vectors ∥ um+1,k−um+1,k−1 ∥∞≤ tol,
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which serves to guarantee the termination. The importance of the second criterion
deserves attention since we are talking about gaps arising from the penalty matrices.
Its equivalence (i.e. Pm+1,k−1

call = Pm+1,k
call ) is crucial to facilitate the convergence of

Newton’s method using the less number of iterations per time step. The procedure
for computing the solutions in the interior after one θ-scheme step is summarized in
the following algorithm:

Algorithm 2 Computing the interior solutions
Input: input um, vm;
1: compute Bp(τ

m+1) and Bc(τ
m+1);

2: compute vm+1 from (5.3.8);
3: compute um+1 from (5.3.7) without penalty terms;
4: apply constraints on vm+1 using um+1;
5: set um+1,0 ← um+1;
6: for k = 1, 2, . . . until convergence do
7: computef(um+1,k−1) using (5.3.14);
8: compute ∇f(um+1,k−1) using (5.3.16);
9: um+1,k ← um+1,k−1 −

(
∇f(um+1,k−1)

)−1
f(um+1,k−1);

10: if First stopping criteria OR Second stopping criteria is satisfied; then
11: break
12: end if
13: end for
14: apply constraints on vm+1 using um+1,k;
15: if τm+1 ∈ Tcoupon then
16: um+1 ← um+1 +K;
17: vm+1 ← vm+1 +K;
18: end if

The existence of a solution of Newton’s method requires nonsingularity of the
Jacobian ∇f . Like in the case of Newton’s method for computing boundary solutions,
there may exist values of parameters r, h, σ, θ, ∆τ , and ρ such that the Jacobian
is singular. Quantification of such conditions requires some analysis. The following
theorem serves as a guarantee of the existence of a solution in Newton’s method.

Theorem 4.4.1. The Jacobian matrix J = ∇f(um+1,k−1) is diagonally dominant.
Therefore, it is non-singular. For any penalty parameter, ρ > 1 the Crank-Nicolson

scheme is stable if ∆τ <
h2

6θσ2 − θh2r − 2ρh2(αc − αp)
or

h2

∆τ(6θσ2 − θh2r − 2ρh2(αc − αp))
< 1.

70



Remark: This stability condition is consistent with the general stability condition
for linear constant coefficient parabolic problems.

Proof. One can use diagonally dominance, also known as Levy–Desplanques theorem
(Roger A. Horn, 2013) as a sufficient condition for non-singularity. Fix ∀i ∈ [1, n]

|Jii| =
∣∣∣∣2h2(1 + θ∆τr)− 3θ∆τσ2 + 2ρ∆τh(αc − αp)

3h

∣∣∣∣ ,
and sum of the off-diagonal elements of the Jacobian:∑

j ̸=i

|Jij| =
∣∣∣∣h3 (1 + θ∆τr) + θ∆τ

σ2

h

∣∣∣∣ .
To maintain the diagonal dominance of the Jacobian, there are some given constants:
θ ∈ [0, 1], r = 0.05, σ = 0.2, and ρ > 1. To ensure the diagonal dominance of the
Jacobian below inequality has to be true:

|Jii| >
∑
j ̸=i

|Jij|.

The Jii can be zero if ρ <
3θσ2

2h
, which is not true under the given parameters, hence

Jii is always non-zero. After some tedious algebraic manipulations, one can deduce
the conditions. The right-hand side of the above inequality is positive, then to ensure
that the left-hand side is positive as well, one can end up by following conditions: h2 >

3θ∆τσ2

2(1 + θ∆τr + ρ∆τ(αc − αp))
and ∆τ <

2h2

3θσ2 − 2h2θr − 2ρh2(αc − αp)
. Therefore,

we have the final condition: ∆τ <
h2

6θσ2 − θh2r − 2ρh2(αc − αp)
which can be true if

ρ ̸= θ(h2r − 6σ2)

2h2
is satisfied. Following the aforementioned conditions, the Jacobian

is invertible, and its determinant is non-zero and, therefore, non-singular. ■

Numerical tests using various realistic values of parameters exhibit no convergence
issues with the methods, suggesting nonsingularity of ∇f .

4.4.3 Summary of the time integration method

By including Algorithm 1 and 2 in the θ-scheme, the complete time stepping proce-
dure to compute the solutions u(x, τ) and v(x, τ) is shown in Algorithm 3.

71



Algorithm 3 θ-scheme for time integration with constraints
Input: input the initial solution at τ 0 = 0: u0, v0, u00, u0n+1, v00, and v0n+1;
1: for m = 0, 1, . . . , nτ − 1 do
2: Compute Bp(τ

m+1) and Bc(τ
m+1);

3: Compute um+1
0 and vm+1

0 by performing of Algorithm 1;
4: Compute um+1

n+1 = κSinte
xmax and vm+1

n+1 = 0;
5: Apply the conversion-callability-puttability constraints on um+1

n+1 and vm+1
n+1 .

6: if τm+1 ∈ Tcoupon then
7: um+1

n+1 ← um+1
n+1 +K;

8: vm+1
n+1 ← vm+1

n+1 +K;
9: end if

10: Compute um+1 and vm+1 by performing of Algorithm 2;
11: end for

For increased stability, it is possible to initiate the time integration using Ran-
nacher’s step Rannacher (1984). In this case, for m = 0, the solutions u1, v1, u10,
u1n+1, v10, and v1n+1 are computed using the initial conditions using Step 2.1–2.6 but
with a smaller time step than ∆τ (e.g, ∆τrann = ∆τ/nrann, where 1 < nrann ∈ N).
Since we did not see stability issues when θ = 1/2, we did not implement Rannacher’s
step to obtain numerical results.

4.5 Numerical solution of the TF model

4.5.1 Comparison with FDM

In this section, we present numerical results obtained from the FEM and time inte-
gration method discussed in Sections 4.3 and 5.3. The modeling and computational
parameters are summarized in Table 5.1, taken from (Ayache et al., 2003; Forsyth and
Vetzal, 2002). The numerical solution is computed for x ∈ [−18, 2], so that the left
boundary is sufficiently close to 0 in the S-space. We compare the numerical results
with a second-order finite difference method (FDM), combined with the θ-scheme for
time integration. To have a fair comparison, we set the number of unknowns in both
methods to be equal. For instance, the same meshing can be used for P1-FEM and
FDM. nE and nt = nτ denote the number of elements and time steps, respectively.
Thus, for P1-FEM, the number of unknowns (nodal points) is n = nE − 1 and, for
P2-FEM, n = 2nE − 1. For the θ-scheme, we set θ = 1

2
(Crank-Nicolson).

Figures 4.1, 4.2, and 4.3 show surfaces of the CB price U for 40 ≤ S ≤ 160,
computed using nE = 100 and 200 and with nt = 200. We note here that the steps
in the solution surfaces correspond to the coupon payment time. Qualitatively, the
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Table 4.1: Modeling and computational parameters

Parameter Value
Time to maturity T 5 years
Conversion 0 to 5 years into k shares
Conversion ratio k 1.0
Face Value F $100
Clean call price Bc $110, from Year 3 to Year 5
Clean put price Bp $105, during Year 3
Coupon payments K $4.0
Coupon dates .5, 1.0, 1.5, ... ,5.0 (semian-

nual)
Risk-free interest rate r 5% or 0.05
Credit risk rc 2% or 0.02
Volatility σ 20% or 0.2
Underlying stock price at t = 0,
Sint

$100

Penalty parameter ρ 106

Newton-Raphson’s method toler-
ance tol

10−6

surfaces indicate no noticeable difference between solutions of FDM and P1- or P2-
FEM. That the FDM and FEM are qualitatively not distinguishable can be seen from
Figure 4.4 and 4.5, where the solutions at t = 0 are plotted.

Figure 4.1: Finite difference solution of the penalty TF model over time t ∈ [0, 5],
with r = 0.05, rc = 0.02, σ = 0.2, F = $100, K = $4, ρ = 106; Left figure: n = 100,
nt = 100; Right figure: n = 200, nt = 200.
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Figure 4.2: P1-FEM solution of the penalty TF model over time t ∈ [0, 5], with
r = 0.05, rc = 0.02, σ = 0.2, F = $100, K = $4, ρ = 106; Left figure: nE = 100,
nt = 100; Right figure: nE = 200, nt = 200.

Figure 4.3: P2-FEM solution of the penalty TF model at t ∈ [0, 5], with r = 0.05,
rc = 0.02, σ = 0.2, F = $100, K = $4, ρ = 106; Left figure: nE = 100, nt = 100;
Right figure: nE = 200, nt = 200.
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Figure 4.4: Solution of the TF model at t = 0, with r = 0.05,rc = 0.02, σ = 0.2,
F = $100, K = $4, ρ = 106; Left figure: for P1-FEM and P2-FEM, nE = 100,
nt = 100, and for FDM n = 200; Right figure: for P1-FEM and P2-FEM, nE = 200,
nt = 200, for FDM, n = 400.

In Figure 4.4, FEM and FDM solutions are having strong similarities at relatively
coarser spatial-temporal grids. One can mention that using the above-mentioned
parameters, a solution of P1 and P2 finite elements is comparable to FDM solution
Ayache et al. (2003). The convergence of the solution based on P2 elements was
indeed obtained using even coarser grids than with P1 or FDM, which is reasonable.

Figure 4.5: Solution of the TF model at t = 0, with r = 0.05,rc = 0.02, σ = 0.2,
F = $100, K = $4, ρ = 106; Left figure: for P1-FEM and P2-FEM, nE = 400,
nt = 400, for FDM n = 800; Right figure: for P1-FEM and P2-FEM, nE = 800,
nt = 800, for FDM n = 1600.

For convergence(mesh-independence) and comparison of the FE solutions with the
FD solutions obtained using various spatial meshes, we present the bond price U at
the initial time t = 0 and S = 100 in Table 4.2 computed using FDM, P1-FEM, and
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P2-FEM, with nE = nt to keep the ratio ∆τ/h constant (∆τ/h = 0.25 < 1). The
standard stability condition for the convection-diffusion equation discretized by FDM
with explicit scheme (θ = 0) requires that

∆τ ≤ Cθ=0min

(
h

|a|
,
h2

2ϵ

)
, 0 < Cθ=0 ≤ 1,

where, for the TF model, a = r − σ2/2 and ϵ = σ2/2. With nE = nt, there exists,
however, some constant n∗

E such that the above stability condition is violated for
nE > n∗

E. Instability was not observed in our numerical simulation with θ = 1/2

and Cθ=1/2 < 1. Our results shown in Table 4.2 illustrated that both P1-FEM and
P2-FEM solutions converge to a value around 123.96 at S = 100$, agreeing with the
solutions reported in (Ayache et al., 2003) for up to 2 decimal places as the time-spatial
mesh is refined. The P1-FEM solution exhibits a similar convergence towards 123.96,
but at a lower rate than P2-FEM. As can be observed, our FE solutions compared
favorably with the FD solutions across these spatial meshes using half of the number
of grid points. P2-FEM solution converges significantly faster than P1-FEM or FDM
spending reduced grid points. Moreover, according to the error estimates in 4.6, P2-
FEM is theoretically faster than P1-FEM, which has been validated in Table 4.2.
In Table 4.2, we also compare the CPU time needed for P1/P2-FEM with the time
needed for FDM. P2-FEM takes almost half the time of FDM while keeping the same
accuracy with fewer points in the mesh. However, it’s important to note that P2-
FEM takes less time to converge compared to FDM (tFDM > tP2-FEM), even though
P2-FEM is more computationally expensive than P1-FEM or FDM. Nevertheless,
P2-FEM provides more accurate results at early refinement levels than P1-FEM and
FDM. The CPU time of P2-FEM for the convergent result is decreased by factor 100
compared to FDM or P1-FEM. The results of Newton’s iterations for P1/P2-FEM

Table 4.2: Convertible bond price at t = 0 and S = 100 computed by P1-FEM,
P2-FEM, and FDM with n, nE = nt

Convertible bond price at t = 0 and S = 100 Relative execution time
n FDM nE P1-FEM nE (DOF ) P2-FEM tP1-FEM/tFDM tP2-FEM/tFDM

400 124.01 400 123.69 100 (200) 123.40 0.87 0.65
800 124.03 800 123.86 200 (400) 124.02 0.71 0.94
1600 123.99 1600 123.90 800 (1600) 123.98 0.84 0.58
3200 123.97 3200 123.94 1200 (2400) 123.98 0.87 0.56
6400 123.97 6400 123.94 1600 (3200) 123.96 0.84 0.56
12800 123.96 12800 123.96 2000 (4000) 123.96 1.04 0.55

and FDM demonstrate a similar number of iterations required for convergence up to
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two decimal places among all methods. Based on these observations, P2-FEM offers
advantages over FDM or/and P1-FEM in terms of both time and convergence using a
four times lesser grid points space and 8 times lesser in time. All methods employed to
address the current problem are fully implemented in Matlab, adopting a vectorized
style. The only exception is the loop designed to execute Newton’s method.

Table 4.3: Number of Newton’s iterations for the results in Table 4.2 with n, nE = nt

FDM P1-FEM P2-FEM
n max min avg nE max min avg nE max min avg

400 2 1 1.08 400 3 1 1.11 100 2 1 1.24
800 2 1 1.11 800 3 1 1.08 200 3 1 1.23
1600 3 1 1.15 1600 4 1 1.06 800 4 1 1.24
3200 4 1 1.18 3200 6 1 1.06 1200 5 1 1.25
6400 5 1 1.24 6400 12 1 1.10 1600 6 1 1.31
12800 6 1 1.33 12800 16 1 1.39 2000 9 1 1.33

Figure 4.5 presents the solution using a finer spatial-temporal grid. It was noted
that P2 solutions are decreasing for very few decimal points compared to FDM but
using finer grids. However, this phenomenon can be recognized in FDM as well.
What is more, a choice of the penalty parameter ρ has no effect on the solution once
we exceed the number 106. The optimal choice of this parameter was adopted from
(Forsyth and Vetzal, 2002) for American exercises.

In Figure 4.2 and 4.3, one can see the semi-annual coupon payments in time
direction, which is shown as jumps over the surface. Moreover, when callability and
puttability occur simultaneously at year 3, it tends to a higher price than it was before.
Finally, any instability for chosen spatial-temporal grids and ρ was undetected.

4.5.2 Absolute stability region

Absolute stability region details are given in the Section 2.6. Based on accumulated
information, one can derive the absolute stability region and check if eigenvalues
meet the region’s requirement. For the Crank-Nicolson time-stepping methods for
nonlinear convertible bond pricing problem based on the TF model, we have presented
the eigenvalues in Figire 4.6, which are crucial for the determination of the absolute
stability region. Moreover, one could see that for nonlinear problems, there are no
instability issues that can be posed based on absolute stability region for the time
integrator and depicted eigenvalues that belong to the same stability range. One
might observe that the eigenvalues differ from those of the linear BS cases. This
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Figure 4.6: Absolute stability region of the time integration scheme for Crank-
Nicolson method, when θ = 1/2

might be justified by the nonlinearity introduced by penalty matrices, which are
tridiagonal in nature. It is important to note that based on realistic parameters of
the model such as r, h, σ, θ, ∆τ , Bc, Bp, and ρ, the eigenvalues meet the requirement
of the absolute stability region, however, employing an impractical set of parameters
the instability may occur.

4.5.3 The Greeks

For practical trading purposes, we also need to measure the sensitivity of the CBs with
respect to the underlying price, time, volatility, risk-free interest rate, etc. (Wilmott,
1998; Higham, 2004), through the values of the Greeks. In the literature, because
FDM is mostly used to compute the price of the options as solutions, the calculation
of the Greeks is done approximately using finite differencing (Christara and Wu, 2022;
Zvan et al., 1999) of the solutions at grid points. Finite difference approaches can
also, in principle, be used to approximate the Greeks once the solutions are available
via FEM. Although it will create additional error sources since FDM solutions and
FEM solutions are different in their nature, therefore, to maintain consistency, we
shall compute some of the Greeks, i.e., the Delta (∆) and the Gamma (Γ), directly
from the finite-element approximation functions. We note, however, that since the
approximating P1 FE function is piece-wise continuous and non-differentiable at the
element boundaries,we can, in this case, only compute the Greeks at any point inside
the elements.

For P1-FEM, the approximating function is piece-wise linear continuous. There-
fore, ∆ can be explicitly computed by differentiating the finite element solution. In
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the element Ωj, the FEM solution is given by

Uh(x) = −uj−1(x− xj)/h+ uj(x− xj−1)/h, x ∈ Ωj. (4.5.1)

Therefore, at an instant time t,

∆(Sj−1/2) =
∂Uh

∂S

∣∣∣∣
Sj−1/2

=
Sint

Sj−1/2

∂Uh

∂x

∣∣∣∣
xj−1/2

=
Sint

hSj−1/2

(uj − uj−1)

after using the change of variables, Sj−1/2 = Sinte
xj−1/2 , xj−1/2 = (xj−1 + xj)/2.

The Greeks corresponding to higher-order derivatives, however, vanish. In this
case, we have to resort to finite differencing using the FEM solutions at nodal points.
For instance,

∂2Uh

∂x2

∣∣∣∣
xj−1

≃ (uj − 2uj−1 + uj−2)/h
2.

Hence,

Γ(Sj−1) =
∂2Uh

∂S2

∣∣∣∣
Sj−1

=
S2

int

S2

∂2Uh

∂x2

∣∣∣∣
xj−1

=
S2

int

h2S2
(uj − 2uj−1 + uj−2). (4.5.2)

For P2-FEM, the approximating FE function is differentiable, which in the element
Ωj reads

Uh(x) = 2uj−1(x− xj− 1
2
)(x− xj)/h2 − 4uj−1/2(x− xj−1)(x− xj)/h2

+2uj(x− xj−1)(x− xj− 1
2
)/h2.

After differentiation at xj−1/2, yields

∂Uh

∂x

∣∣∣∣
xj−1/2

= (uj − uj−1)/h and
∂2Uh

∂x2

∣∣∣∣
xj−1/2

= 4(uj − 2uj−1/2 + uj−1)/h
2.

This in turn results in ∆(Sj−1/2) in (4.5.1) and

Γ(Sj−1/2) =
4S2

int

h2S2
(uj − 2uj−1/2 + uj−1). (4.5.3)

An example of the numerical results of the Greeks obtained by using derived
formulas is shown in Figure 4.8 for ∆ and Γ at (t = 0). The corresponding Greeks are
computed using P2-FEM for ∆ and Γ at Sj−1/2. The FDM Greeks are performed by
a central difference scheme evaluated at the same nodal points. As can be seen, the
Delta and Gamma curves obtained by the two methods are smooth curves without
spikes or peaks, highlighting their suitability for hedging purposes. It appears that
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the the Greeks obtained by P2-FEM demonstrate the similarity with those obtained
by FDM.

Visible peaks and spikes in the solution surfaces are due to the constraints and
coupon payment; at this point, the solution is not differentiable. Delta and Gamma,
however, are smooth at the locations where the inequality constraints are not imposed.

Figure 4.7: Greeks by with the parameters t = 0, r = 0.05, rc = 0.02, σ = 0.2,
F = $100, K = $4, ρ = 106, nE = 1600, nt = 1000 by P2-FEM; Left figure: Delta ∆;
Right figure: Gamma Γ; Right figure: Theta Θ.
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Figure 4.8: Greeks by with the parameters t = 0, r = 0.05, rc = 0.02, σ = 0.2,
F = $100, K = $4, ρ = 106, nE = 1600, nt = 1000 by P2-FEM; Left figure: Delta ∆;
Right figure: Gamma Γ.

4.6 Accuracy of the approximations

To demonstrate that our FEM approach to the TF problem described above may
obtain first order accuracy, we consider the following linear model problem (Roache,
2001), which keeps the left-hand side of the TF the system defined by (1) and (2),
without constraints (and hence no penalty term), and coupon payment corresponding
to the exact solution

U(x, τ) = S2
inte

2x
√
Sintex − Fe−rτ

√
Sintex,

V (x, τ) = S2
inte

2x
√
Sintex − Fe−rτ

√
Sintex + x2τ,

where τ ∈ (0, 1). This manufactured solution corresponds to the initial conditions{
U(x, 0) = S2

inte
2x
√
Sintex − F

√
Sintex,

V (x, 0) = S2
inte

2x
√
Sintex − F

√
Sintex,

the boundary conditions{
U(0, τ) = S2

int

√
Sint − Fe−rτ

√
Sint,

V (0, τ) = S2
int

√
Sint − Fe−rτ

√
Sint,

{
U(1, τ) = S2

inte
2
√
Sinte− Fe−rτ

√
Sinte,

V (1, τ) = S2
inte

2
√
Sinte− Fe−rτ

√
Sinte+ τ,

and the non-homogeneous BS equations

f1 = Uτ −
σ2

2
Uxx − (r − σ2

2
)Ux + rU + rcV,

f2 = Vτ −
σ2

2
Vxx − (r − σ2

2
)Vx + (r + rc)V,
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in the CB and COCB PDE, respectively. Applying FEM and the θ-scheme leads to
the numerical procedure

A11u
m+1 = Ã11u

m − A12v
m+1 + Ã12v

m + θ∆τβm+1
1 + (1− θ)∆τβm

1 + b̂
m

M,u − b̂
m+1

M,u +

θ∆τf1 + (1− θ)∆τf1,

A22v
m+1 = Ã22v

m + θ∆τβm+1
2 + (1− θ)∆τβm

2 + b̂
m

M,v − b̂
m+1

M,v + θ∆τf2 + (1− θ)∆τf2.

Calculated errors are presented in Figure 4.9 and 4.10 using two measures (Aman-
bek and Wheeler, 2019; Amanbek et al., 2020):

∥Error∥L2 = ∥U(x, 1)− unt∥L2 ,

∥Error∥L∞(L2) = max
1≤m≤nt

(∥U(x,m∆τ)− um∥L2) ,

where um is the solution of the model problem at τ = m∆τ , computed by P1-FEM
or P2-FEM. In Figure 4.9, the errors are calculated for varying ∆τ and a fixed value
of h. The errors decrease as ∆τ is reduced to 0, with a rate that is proportional to
∆τ (first-order convergence).

Figure 4.9: Error estimates of the model problem in τ ∈ [0, 1], with r = 0.05,rc = 0.02,
σ = 0.2, hP1 = 3× 10−4, and hP2 = 10−3.

In Figure 4.10, the errors are calculated for varying h and fixed ∆τ . The plots
suggest convergence of P1-FEM and P2-FEM at the rate proportional to h and h2,
respectively (Theoretically, e.g. for P1-FEM the convergence rate is given by the
relation ∥Error∥L∞(L2) ≤ C(h+∆τ)) Amanbek and Wheeler (2019); Amanbek et al.
(2020). This convergence rate is as expected for the linear model but cannot be
expected when nonlinear (e.g., penalty) terms are added.
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Figure 4.10: Error estimates of the MMS model in x ∈ [0, 1], with r = 0.05,rc = 0.02,
σ = 0.2, and ∆τ = 10−4.
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Chapter 5

AFV model for Convertible bonds

5.1 Introduction

Convertible bonds subject to default strategies can be priced by the so called AFV
model developed in Ayache et al. (2003). However, the TF model’s modeling as-
pect is criticized and justified as inconsistent in Ayache et al. (2003) addressing why
this model falls short of derivative market requirements. The intuitive continuation
from the TF to the AFV model involves the development of partial and total de-
fault strategies. Numerical results by IGA present a comparable performance on the
benchmark problem Forsyth and Vetzal (2002) by the Finite Volume Method (FVM).
In the latter, the authors employed Van-leer flux limiters and Rannacher smoothing
Zvan et al. (1999) technique, ensuring the high-resolution scheme with total variation
diminishing properties, which guarantees monotonic convergence. The driving force
behind applying these stabilization techniques is to avoid spurious oscillations caused
by the convection-dominated term in the AFV model. Our approach incorporates the
use of Landau transform Zhu and Zhang (2011) which reduces variable coefficients to
constant coefficients, however, it can not avoid the convection-dominant nature of the
problem. Nevertheless, the IGA framework successfully performed comparable solu-
tions. Equally important, it maintained monotonic convergence during the refinement
process, even in the presence of convection-dominance. Additionally, corresponding
Greeks are calculated by IGA and P2-FEM with no peaks or shocks.

Pricing the American style of derivatives is a fundamental task in derivative pricing
theory, especially the post-processing Greeks are of interest for hedging and trading
strategies. For decades, the Finite Difference method (FDM) method has been a
common choice among many scientists due to its computational speed and ease of
implementation. The literature contains a vast amount of papers on FDM applied to
Black-Scholes type of problems, such as smooth mapping functions for non-uniform
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mesh Christara and Wu (2022) and predictor-corrector schemes for handling the non-
linear PDEs Lin and Zhu (2020). Another common choice is the conventional Finite
Element Method (FEM) has produced superconvergence results in Golbabai et al.
(2013) for barrier options. Authors in Wei et al. (2024) have shown that modified
P2 basis functions under the FEM framework can effectively handle the nonlinear
Leland model. Some rare numerical methods, like reduced basis functions, were uti-
lized for jump-diffusion models by Cont et al. (2011), while the spectral element
method is used by Zhu and Kopriva (2009). Additionally, articles have used the
splines Christara and Leung (2016) and B-spline wavelets Ortiz-Gracia and Oosterlee
(2013). There is only one paper that incorporates IGA for jump-diffusion models
Posṕı̌sil and Šv́ıgler (2018). Indeed, it is a well-known fact that FEM is a widespread
tool among specialists, as it suggests mesh adaptivity and allows for error analysis
conduction. Moreover, the FEM solution is superior to FDM in terms of convergence
Andalaft-Chacur et al. (2011).

However, FEM basis functions become partially negative when higher-degree poly-
nomials are used, leading to the so-called Gibbs phenomenon. Due to the specifics of
the assembling process in FEM, basis functions with degrees higher than one require
more computational resources. In contrast, IGA’s element matrix size is independent
of the polynomial degree, and the NURBS basis functions are always positive, with
a variation diminishing property that avoids the Gibbs phenomenon. Since IGA di-
rectly relates to the FEM framework, it inherits the above-mentioned advantages of
FEM. Another crucial point about IGA is that the complex geometries encountered
in payoff functions in derivative pricing theory can be almost exactly described by
NURBS Posṕı̌sil and Šv́ıgler (2018), utilizing a non-uniform knot vector that entails
the multiplicity of knots at points where it is less differentiable. Furthermore, the
NURBS can offer greater flexibility by allowing control over the weights of control
points, which is a feature not found in other methods.

Within this chapter, we present several novelties that warrant the reader’s atten-
tion:

• IGA based on NURBS is applied to nonlinear American-style contracts for the
first time.

• A fundamental framework for addressing the nonlinearities occurring in Amer-
ican contracts is established.

• IGA performance has showcased the suppression of spurious oscillations previ-
ously encountered with P2-FEM.
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• The Greeks are calculated by post-processing IGA and FEM algorithms rather
than simply relying on FDM, which could create and change the nature of the
solution by adding another source of error.

• Monotonic convergence at the strike price is maintained without any stabi-
lization techniques in the presence of Peclet number for nonlinear American
contracts.

• The application of fitted NURBS to the AFV model suggests a solution with
fewer degrees of freedom.

• Considerably consistent Greek results with no peaks or shocks are presented for
nonlinear American contracts by IGA-FEM and P2-FEM.

5.1.1 Derivation of the AFV model

5.1.1.1 Convertible bond with no credit risk

One could start the modeling part with no default possibility. Suppose that interest
rates are known functions of time, and that the stock price is described by Browninan
motion.

dS = µSdt+ σSdz

where S is the stock price, µ is its drift rate, σ is its volatility, and dz is the increment
of a Wiener process. Based on standard arguments of Ito’s lemma and Delta hedging,
the risk-neutral value of V (S, t) of any claim contingent on S is given by

Vt +

(
σ2

2
S2VSS + (r(t)− q)SVS − r(t)V

)
= 0

where r(t) is the known interest rate and q is the dividend rate. A convertible bond has
the following contractual key properties, which distinguish among other derivatives:

• A continuous (time-dependent) puttability provision (with an exercise price of
Bp ).

• A continuous (time-dependent) conversion provision. At any time, the bond
can be converted to K shares.

• A continuous (time-dependent) callability provision. At any time, the issuer
can call the bond for price Bc > Bp. However, the holder can convert the bond
if it is called.
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The operator LV is defined as

LV ≡ −Vt −
(
σ2

2
S2VSS + (r(t)− q)SVS − r(t)V

)
The solution is defined in the domain where κS ≥ BC and κS < Bc separately:

- BC > κS. In this case, the problem is formulated as a linear complementarity
problem (LCP)  LV = 0

(V −max (Bp, KS)) ≥ 0
(V −Bc) ≤ 0


∨

 LV ≥ 0
(V −max (Bp, KS)) = 0

(V −Bc) ≤ 0


∨

 LV ≤ 0
(V −max (Bp, KS)) ≥ 0

(V −Bc) = 0

 (5.1.1)

where the sign ∨ is standing to indicate that at least one of the three options is valid
at each point in the solution domain.

- Bc ≤ κS. The convertible value is,

V = κS

since the holder is likely to convert it swiftly. Equation (5.1.1) is an intuitive formu-
lation of the problem LV = 0 subject to simplified inequality constraints:

V ≥ max (Bp, KS)

V ≤ max (Bc, KS) .

The solution is associated with the continuous region where LV = 0 and neither
the callability nor the puttability provisions are obligated (left side term in (5.1.1)),
or the puttability constraint is obligated (middle term in (5.1.1)), or the callability
provision is obligated (right side term in (5.1.1)).

One shall take care of boundary conditions to cover the model’s well-posedness.
The operator LV at S = 0 and as S →∞. At S = 0, LV becomes

LV ≡ − (Vt − r(t)V ) ; S → 0
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5.1.1.2 Risky bond

The discussion of credit risk can sometimes be complicated due to uncertainty, where
the risk might be capricious. One could start with the valuation of coupon-bearing
bonds, where the issuer has some default risk. This idea can have a commonality with
the paper Duffie and Singleton (1999). Therefore, we claim that the risk-free rate is a
function. Moreover, the default risk is diversifiable, which implies that the probability
of real-world and risk-neutral default are equal. Based on these assumptions, one
could define the probability of default in the time increment t + dt by p(S, t), which
is called the hazard rate.

Construct the hedging portfolio, where B is a risky bond.

Π = B −∆S.

If there is no default, the choice is ∆ = BS, then the Ito lemma provides

dΠ =

[
Bt +

σ2S2

2
BSS

]
dt+ o(dt) (5.1.2)

where o(dt) denotes terms that go to zero faster than dt. The following assumptions
are made:

• The probability of default in t→ t+ dt is pdt.

• The value of the bond immediately after default is RX where 0 ≤ R ≤ 1 is the
recovery factor.

• The stock price S remains unchanged on default case.

If the bond is coupon-bearing, then X is the face value. In contrast, X represents
the accumulated value derived from the initial issue price, or one could assume that
X = B is the pre-default value. Then equation (5.1.2) is written as

dΠ = (1− pdt)
[
Bt +

σ2S2

2
BSS

]
dt− pdt(B −RX) + o(dt)

=

[
Bt +

σ2S2

2
BSS

]
dt− pdt(B −RX) + o(dt). (5.1.3)

The above-mentioned assumptions suggest

E(dΠ) = r(t)Πdt, (5.1.4)
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combining (5.1.3) and (5.1.4) gives

Bt + r(t)SBS +
σ2S2

2
BSS − (r(t) + p)B + pRX = 0.

If a bond is not coupon bearing, then X = B, then the solution of bond with face
value F is

B = F exp

[
−
∫ T

t

(r(u) + p(u)(1−R))du
]
.

Above assumptions might be adjusted to the stock price in the event of default.
Adjustment is that the stock price S will jump to zero in the case of default, then
equation (5.1.3) is reformulated as

dΠ = (1− pdt)
[
Bt +

σ2S2

2
BSS

]
dt− pdt(B −RX −∆S) + o(dt)

=

[
Bt +

σ2S2

2
BSS

]
dt− pdt(B −RX −∆S) + o(dt)

based on delta hedging arguments ∆ = BS, one get

Bt + (r(t) + p)SBS +
σ2S2

2
BSS − (r(t) + p)B + pRX = 0.

Now, p is shown in the drift term as well as in the discounting term. Notably, many
bond valuation models do not incorporate the information about the stock dynamic
behavior in the case of default.

5.1.1.3 The Hedge Model

In the previous section, the discussion of credit risk incorporation was revised in
detail. For the sake of simplicity, one could use the put or call features, and that
conversion is only allowed at the terminal time (as a European-style contract) or in
the event of default. Let S+ be the stock price immediately after default, and S− be
the stock price right before default. Suppose that

S+ = S−(1− η) (5.1.5)

where η ∈ [0, 1]. η = 1 is the "total default" case when the stock price becomes zero,
and η = 0 is the "partial default" case when the issuing firm’s status is defaulted,
but the stock price remains unchanged. The usual portfolio is constructed as

Π = U −∆S.
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If there was no credit risk, i.e. p = 0, then choosing ∆ = US and applying Ito lemma
leads to

dΠ =

[
Ut +

σ2S2

2
USS

]
dt+ o(dt)

However, the context of interest considers the non-zero hazard rate p. The following
assumptions are made:

• Upon default, the stock price jumps according to equation (5.1.5).

• Upon default, the convertible bondholders have the option of receiving

– the amount RX, where 0 ≤ R ≤ 1 is the recovery factor (as in the case of a
simple risky bond, there are several possible assumptions that can be made
about X (e.g. face value, the pre-default value of the bond portion of the
convertible, etc.), but for now, we will not make any specific assumptions),
or:

– shares worth κS(1− η).

Following the above assumptions, the change in the value of the hedging portfolio
when t→ t+ dt is

dΠ = (1− pdt)
[
Ut +

σ2S2

2
USS

]
dt− pdt(U −∆Sη)

)
+ pdtmax(κS(1− η), RX) + o(dt)

=

[
Ut +

σ2S2

2
USS

]
dt− pdt (U − USSη) + pdtmax(κS(1− η), RX) + o(dt).

(5.1.6)

The expected return on the portfolio is given by equation (5.1.4) and making the
standard approach of equalization with the expectation of equation (5.1.6), one can
get

r [U − SUS] dt =

[
Ut +

σ2S2

2
USS

]
dt−p [U − USSη] dt+p[max(κS(1−η), RX)]dt+o(dt)

which leads to

Ut + (r(t) + pη)SUS +
σ2S2

2
USS − (r(t) + p)U + pmax(κS(1− η), RX) = 0 (5.1.7)

note that r(t)+ pη is shown in the drift term and r(t)+ p is shown in the discounting
term in equation (5.1.7). When R = 0, η = 1, default is present, but with no recovery,
the consequence is that one solves the full convertible bond problem (2.4), with r(t)

changed to r(t) + p. Then, we can define

MU ≡ −Ut −
(
σ2

2
S2USS + (r(t) + pη − q)SUS − (r(t) + p)U

)
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where the equation (4.6) for the case where the stock pays a proportional dividend q
as

MU − pmax(κS(1− η), RX) = 0 (5.1.8)

The important moment of considering the complete problem with risk debt can be
done by generalizing problem (5.1.1), by means of(5.1.8), which leads to LCP:

- Bc > κS  MU − pmax(κS(1− η), RX) = 0
(U −max (Bp, κS)) ≥ 0

(U −Bc) ≤ 0


∨

 MU − pmax(κS(1− η), RX) ≥ 0
(U −max (Bp, κS)) = 0

(U −Bc) ≤ 0


∨

 MU − pmax(κS(1− η), RX) ≤ 0
(U −max (Bp, κS) ≥ 0

(U −Bc) = 0

 (5.1.9)

- Bc ≤ κS

U = κS (5.1.10)

The value of the convertible bond is rewritten as

MU − pmax(κS(1− η), RX) = 0, (5.1.11)

subject to the callability and puttability constraints

U ≥ max (Bp, KS)

U ≤ max (Bc, KS) . (5.1.12)

Actually, equation (5.1.9) simply states that either we are in the continuation
region or one of the two constraints (call or put) is obligated.

Referring to previous assumptions on recovery factor RX, we say that the recovery
factor on default is equalized to face value, therefore, the value of the convertible bond
value U can be computed from a single equation (5.1.1). However, this decoupling
won’t be true if we suppose that X represents the bond component of the convertible.
Therefore, put/call provisions shall be applied to the value of the bond component.
Following this recovery assumption, one is in necessity of solving another equation
for the bond component B, which will later construct the system of equations to find
the value of U .
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5.1.1.4 Equity component upon default

Upon default, recovered value RB, where, B is the pre-default bond component of
the convertible bond. Let us devise a splitting of the convertible bond into two
components, such that U = B + C, where B is the bond component and C is the
equity component. The moment that deserves to be highlighted is that the splitting
is true if, upon default, the holder recovers RB, with B being the bond component
of the convertible and C, the equity component.

Then, in the case where the holder recoversRB on default, we suggest the following
LCP for bond and equity components MC − pmax(κS(1− η)−RB, 0) = 0

(C − (max (Bc, KS)−B)) ≤ 0
(C − (κS −B) ≥ 0


∨
(
MC − pmax(κS(1− η)−RB, 0) ≤ 0

C = max (Bc, KS)−B

)
∨
(
MC − pmax(κS(1− η)−RB, 0) ≥ 0

C = κS −B

)
, (5.1.13)

 MB −RpB = 0
B −Bc ≤ 0

B − (Bp − C) ≥ 0

 ∨ ( MB −RpB ≤ 0
B = Bc

)
∨
(
MB −RpB ≥ 0
B = Bp − C

)
. (5.1.14)

Combination of two LCPs (5.1.13)-(5.1.14), and recalling that U = B + C, it can be
seen that equations (5.1.9)-(5.1.10) are satisfied. Informally, the equations (5.1.13)
can be rewritten as

MC − pmax(κS(1− η)−RB, 0) = 0 (5.1.15)

subject to the constraints

B + C ≤ max (Bc, KS)

B + C ≥ κS. (5.1.16)

In the same manner, the LCP (5.1.14) is written as

MB −RpB = 0 (5.1.17)

subject to the constraints

B ≤ Bc

B + C ≥ Bp. (5.1.18)
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One shall mention that the constraints of bond and equity components preserve the
fact that U = B + C and B ≤ Bc. The payoff functions of each component are
suggested to have the following forms:

U(S, T ) = F +max(κS − F, 0)

C(S, T ) = max(κS − F, 0)

B(S, T ) = F.

5.1.2 AFV model as American contract

For American contract, we have extended our previous work on pricing the convert-
ible Bonds by TF model Kazbek et al. (2024), as a natural evolution to AFV model,
since the model has more sophisticated default strategies comparing to TF model.
Ayache et al. Ayache et al. (2003) came up with a system of partial differential
equations for pricing convertible bonds subject to the default strategy of the under-
lying asset, as described in 5.1.1. The combined system of equations are constructed
from (5.1.11), (5.1.15), and (5.1.17) as a coupled system of triple PDEs

∂U

∂t
+

1

2
σ2S2∂

2U

∂S2
+ (r + pη)S

∂U

∂S
− (r + p)U + pmax(kS(1− η), RB) = 0,

(5.1.19)
∂B

∂t
+

1

2
σ2S2∂

2B

∂S2
+ (r + pη)S

∂B

∂S
− (r + p)B +RpB = 0, (5.1.20)

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ (r + pη)S

∂C

∂S
− (r + p)C + pmax(kS(1− η)−RB, 0) = 0,

(5.1.21)

for the time t ∈ (0, T ) and the underlying stock price S ∈ (0,∞), with U be the value
of the convertible bond, B be the bond component, C be the equity component, r
be the risk-free rate, p be the hazard rate, η be the indicator of the partial or total
default strategies, R be the recovery factor upon the default, k be the conversion rate
and σ be volatility.

The terminal condition at the maturity time T :

U(S, T ) =

{
F +K, if F +K ≥ kS,

kS, otherwise,
, (5.1.22)

B(S, T ) = F +K, (5.1.23)

and

C(S, T ) =

{
kS − F −K, if kS − F −K ≥ 0,

0, otherwise.
(5.1.24)
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Once the convertible bond is issued, before its expiration date, the holder can convert
if it is reasonable, and the issuer will pay the principal. Otherwise, the following
inequalities hold:

1. Value of the convertible bond (5.1.19), subject to following constraints:

U(S, t) ≥ max(Bp, kS), (5.1.25)

U(S, t) ≤ max(Bc, kS). (5.1.26)

2. Value of the bond component (5.1.20), subject to following constraints:

B(S, t) ≤ Bc, (5.1.27)

B(S, t) + C(S, t) ≥ Bp. (5.1.28)

3. Value of the equity component (5.1.21), subject to following constraints:

B(S, t) + C(S, t) ≤ max(Bc, kS), (5.1.29)

B(S, t) + C(S, t) ≥ kS. (5.1.30)

Dirty call and put prices depend on accrued interest, which will be paid when
coupon payment dates on the pending stage, therefore:

Bp,c(t) = Bclean
p,c + AccI(t), (5.1.31)

where

AccI(t) = Ki
t− ti−1

ti − ti−1

, (5.1.32)

the accrued interest at any time t between the time of the last coupon payment ti−1

and the time of the next coupon payment ti.
At S = 0, the boundary condition is a system of time-dependent equations:

∂U(0, t)

∂t
= (r + p)U(0, t)−RpB(0, t),

∂B(0, t)

∂t
= (r + (1−R)p)B(0, t),

∂C(0, t)

∂t
= (r + p)C(0, t),

(5.1.33)
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As S →∞, the boundary condition reveals to be converted into stock with a partic-
ular conversion ratio:

lim
S→∞


U(S, t) = kS,

B(S, t) = 0,

C(S, t) = kS

(5.1.34)

Henceforth, in the rest of the chapter, we shall refer to the American contract as the
"AFV model".

5.1.3 Transformation of the models

Classical Landau transformation Zhu and Zhang (2011) is going to be used to trans-
form the AFV model,

• τ = T − t, and

• x = ln

(
S

Sint

)
,

where Sint is the stock price at the initial time t = 0. The terminal-boundary value
problem is transformed into the initial-boundary value problem.

5.1.3.1 AFV model

Equations (5.1.19)–(5.1.21) are transformed in the same manner:

∂U

∂τ
=
σ2

2

∂2U

∂x2
+ (r + pη − σ2

2
)
∂U

∂x
− (r + p)U + pmax(kSinte

x(1− η), RB),

(5.1.35)

∂B

∂τ
=
σ2

2

∂2B

∂x2
+ (r + pη − σ2

2
)
∂B

∂x
− (r + p)B +RpB, (5.1.36)

∂C

∂τ
=
σ2

2

∂2C

∂x2
+ (r + pη − σ2

2
)
∂C

∂x
− (r + p)C + pmax(kSinte

x(1− η)−RB, 0),
(5.1.37)

with (τ, x) ∈ (0, T )× (−∞,∞). The equity component PDE can be written as:

∂C

∂τ
=
σ2

2

∂2C

∂x2
+ (r + pη − σ2

2
)
∂C

∂x
− (r + p)C + pγ, (5.1.38)

where,

γ =

{
0, if kSinte

x(1− η)−RB < 0,

kSinte
x(1− η)−RB, otherwise.
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The initial conditions transformed from terminal conditions:{
U(x, 0) = F +K, if F +K ≥ kSinte

x,

U(x, 0) = kSinte
x, otherwise,

, (5.1.39)

B(x, 0) = F +K, (5.1.40)

and {
C(x, 0) = kSinte

x − F −K, if kSinte
x − F −K ≥ 0,

C(x, 0) = 0, otherwise.
(5.1.41)

The three constraints are transformed into the following:

1. Value of the convertible bond (5.1.19), subject to following constraints:

U(x, τ) ≥ max(Bp, kSinte
x), (5.1.42)

U(x, τ) ≤ max(Bc, kSinte
x). (5.1.43)

2. Value of the bond component (5.1.20), subject to following constraints:

B(x, τ) ≤ Bc, (5.1.44)

B(x, τ) + C(x, τ) ≥ Bp. (5.1.45)

3. Value of the equity component (5.1.21), subject to following constraints:

B(x, τ) + C(x, τ) ≤ max(Bc, kSinte
x), (5.1.46)

B(x, τ) + C(x, τ) ≥ kSinte
x. (5.1.47)

with

Bp,c(τ) = Bcl
p,c +Ki

τ − τi−1

τi − τi−1

. (5.1.48)

For the boundary conditions, we note here that x is not defined at S = 0. As we set
S as close as possible to 0 in the actual numerical computation, we can assume that
(5.1.49) also holds at the proximity of S = 0, which corresponds to xmin → −∞ in
the x-space. Using the change of variables, the boundary conditions at xmin reads

∂U(xmin, τ)

∂t
= −(r + p)U(xmin, τ) +RpB(xmin, τ),

∂B(xmin, τ)

∂t
= −(r + (1−R)p)B(xmin, τ),

∂C(xmin, τ)

∂t
= −(r + p)C(xmin, τ),

(5.1.49)
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Transformation of the boundary conditions at S → +∞ is straightforward:
U(xmax, τ) = kSinte

xmax ,

B(xmax, τ) = 0,

C(xmax, τ) = kSinte
xmax ,

(5.1.50)

specified at x = xmax →∞.
To construct the penalty PDEs for the convertible bond valuation, one can use

reformulate the inequality constraints Forsyth and Vetzal (2002) into:

U(x, τ) ≥ max(Bp, kSinte
x) ⇒ Πp := U⋆

p − U(x, τ) ≤ 0.

where U⋆
p = max(Bp, kSinte

x). With Πc := U(x, τ)−U⋆
c ≤ 0, where U⋆

c = max(Bc, kSinte
x),

the penalty PDEs for the bond valuation:

∂U

∂τ
=

σ2

2

∂2U

∂x2
+ (r + pη − σ2

2
)
∂U

∂x
− (r + p)U + pmax(kSintexp(x)(1− η), RB)

+ ρmax(U − U⋆
c , 0) + ρmax(U⋆

p − U, 0)

=
σ2

2

∂2U

∂x2
+ (r + pη − σ2

2
)
∂U

∂x
− (r + p)U + pδ + ραcΠc + ραpΠp, (5.1.51)

where ρ > 0 is the penalty parameter and

δ =

{
RB, if RB > kSinte

x(1− η),

kSinte
x(1− η), otherwise,

αc =

{
1, if U − U⋆

c ≥ 0,

0, otherwise,
αp =

{
1, if U⋆

p − U ≥ 0,

0, otherwise.

Note that this penalty PDE is not defined in the entire time domain [0, T ]. Instead,
the penalty term is only active when the right to call or put is active.

5.2 Isogeometric analysis

In this section, the weak formulation for the AFV model is described in detail to
construct the system of algebraic differential equations. We shall refer the reader
to the basic knowledge about the spaces and basis function details in section 2.3.
Detailed information about the class of functions and spaces are presented there,
moreover, integration details of IGA approach can be found as well.

5.2.1 Weak formulation for AFV model

For spatial discretization, the collection of trial solution

U(x, τ), B(x, τ), C(x, τ) ∈ S =
{
f
∣∣f ∈ H1(Ω), f

∣∣
ΓD

= g
}

97



and weighting functions are defined as

w, q, z ∈ V =

{
f̂
∣∣∣f̂ ∈ H1(Ω), f̂

∣∣∣
ΓD

= 0

}
.

The weak formulation:∫
Ω

w
∂U

∂τ
dx =

σ2

2

∫
Ω

w
∂2U

∂x2
dx+

(
r + pη − σ2

2

)∫
Ω

w
∂U

∂x
dx− (r + p)

∫
Ω

wUdx+ p

∫
Ω

wδdx

+ ρ

∫
Ω

αcwΠcdx+ ρ

∫
Ω

αpwΠpdx,

∫
Ω

z
∂B

∂τ
dx =

σ2

2

∫
Ω

z
∂2B

∂x2
dx+

(
r + pη − σ2

2

)∫
Ω

z
∂B

∂x
dx− (r + p)

∫
Ω

zBdx+Rp

∫
Ω

zBdx,

∫
Ω

q
∂C

∂τ
dx =

σ2

2

∫
Ω

q
∂2C

∂x2
dx+

(
r + pη − σ2

2

)∫
Ω

q
∂C

∂x
dx− (r + p)

∫
Ω

qCdx+ p

∫
Ω

qγdx,

weak formulation after integration by parts can be written as:

∂

∂τ

∫
Ω

wUdx = −σ
2

2

∫
Ω

∂w

∂x

∂U

∂x
dx−

(
r + pη − σ2

2

)∫
Ω

∂w

∂x
Udx− (r + p)

∫
Ω

wUdx+ p

∫
Ω

wδdx

+ ρ

∫
Ω

αcwΠcdx+ ρ

∫
Ω

αpwΠpdx,

∂

∂τ

∫
Ω

zBdx = −σ
2

2

∫
Ω

∂z

∂x

∂B

∂x
dx−

(
r + pη − σ2

2

)∫
Ω

∂z

∂x
Bdx− (r + p)

∫
Ω

zBdx+Rp

∫
Ω

zBdx,

∂

∂τ

∫
Ω

qCdx = −σ
2

2

∫
Ω

∂q

∂x

∂C

∂x
dx−

(
r + pη − σ2

2

)∫
Ω

∂q

∂x
Cdx− (r + p)

∫
Ω

qCdx+ p

∫
Ω

qγdx.

Consider now the finite dimensional subspace Sh
0 ⊂ H1

0, spanned by the basis
{R1, R2, . . . , Rn}. The IGA NURBS-based finite-element approximation to the solu-
tion U is the function

Uh =
n∑

i=1

uiRi +
∑
i∈I∂

uiRi, ui ∈ R,

where Ri∈I∂ are additional functions needed to interpolate the given solutions at the
boundaries. A similar form of approximation to V and C can be devised, namely

Bh =
n∑

i=1

viRi +
∑
i∈I∂

viRi, vi ∈ R.

Ch =
n∑

i=1

ciRi +
∑
i∈I∂

ciRi, ci ∈ R.
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The use of the above approximations results in the weak formulation in the finite-
dimensional space:

∂

∂τ

 n∑
i=1

ui

∫
Ω

wRi +
∑
i∈I∂

ui

∫
Ω

wRi

 = −σ
2

2

 n∑
i=1

ui

∫
Ω

∂w

∂x

∂Ri

∂x
+
∑
i∈I∂

ui

∫
Ω

∂w

∂x

∂Ri

∂x


−
(
r + pη − σ2

2

) n∑
i=1

ui

∫
Ω

∂w

∂x
Ri +

n∑
i∈I∂

ui

∫
Ω

∂w

∂x
Ri


− (r + p)

 n∑
i=1

ui

∫
Ω

wRi +
∑
i∈I∂

ui

∫
Ω

wRi


+ p

 n∑
i=1

δi

∫
Ω

wRi +
∑
i∈I∂

δi

∫
Ω

wRi

− Pc ± Pp,

(5.2.1)

where Pc = ρ

∫
Ω

αcw (U − U⋆
c ) dx and Pp = ρ

∫
Ω

αpw
(
U⋆
p − U

)
dx.

∂

∂τ

 n∑
i=1

vi

∫
Ω

zRi +
∑
i∈I∂

vi

∫
Ω

zRi

 = −σ
2

2

 n∑
i=1

vi

∫
Ω

∂z

∂x

∂Ri

∂x
+
∑
i∈I∂

vi

∫
Ω

∂z

∂x

∂Ri

∂x


−
(
r + pη − σ2

2

) n∑
i=1

vi

∫
Ω

∂z

∂x
Ri +

n∑
i∈I∂

vi

∫
Ω

∂z

∂x
Ri


− (r + p)

 n∑
i=1

vi

∫
Ω

zRi +
∑
i∈I∂

vi

∫
Ω

zRi


+Rp

 n∑
i=1

vi

∫
Ω

zRi +
∑
i∈I∂

vi

∫
Ω

zRi

 ,

(5.2.2)
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and

∂

∂τ

 n∑
i=1

ci

∫
Ω

qRi +
∑
i∈I∂

ci

∫
Ω

qRi

 = −σ
2

2

 n∑
i=1

ci

∫
Ω

∂q

∂x

∂Ri

∂x
+
∑
i∈I∂

ci

∫
Ω

∂q

∂x

∂Ri

∂x


−
(
r + pη − σ2

2

) n∑
i=1

ci

∫
Ω

∂q

∂x
Ri +

n∑
i∈I∂

ci

∫
Ω

∂q

∂x
Ri


− (r + p)

 n∑
i=1

ci

∫
Ω

qRi +
∑
i∈I∂

ci

∫
Ω

qRi


+ p

 n∑
i=1

γi

∫
Ω

qRi +
∑
i∈I∂

γi

∫
Ω

qRi

 .

(5.2.3)
In the Galerkin method Cottrell et al. (2009), the test functions w,z, and q are chosen
to coincide with the basis function Ri. Imposing this condition for w, z, q = Rj,
j = 1, . . . , n results in the system of equations

∂

∂τ

 n∑
i=1

ui

∫
Ω

RjRi +
∑
i∈I∂

ui

∫
Ω

RjRi

 = −σ
2

2

 n∑
i=1

ui

∫
Ω

∂Rj

∂x

∂Ri

∂x
+
∑
i∈I∂

ui

∫
Ω

∂Rj

∂x

∂Ri

∂x


−
(
r + pη − σ2

2

) n∑
i=1

ui

∫
Ω

∂Rj

∂x
Ri +

n∑
i∈I∂

ui

∫
Ω

∂Rj

∂x
Ri


− (r + p)

 n∑
i=1

ui

∫
Ω

RjRi +
∑
i∈I∂

ui

∫
Ω

wRi


+ p

 n∑
i=1

δi

∫
Ω

RjRi +
∑
i∈I∂

δi

∫
Ω

RjRi

− Pc,j ± Pp,j,

(5.2.4)
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∂

∂τ

 n∑
i=1

vi

∫
Ω

RjRi +
∑
i∈I∂

vi

∫
Ω

RjRi

 = −σ
2

2

 n∑
i=1

vi

∫
Ω

∂Rj

∂x

∂Ri

∂x
+
∑
i∈I∂

vi

∫
Ω

∂Rj

∂x

∂Ri

∂x


−
(
r + pη − σ2

2

) n∑
i=1

vi

∫
Ω

∂Rj

∂x
Ri +

n∑
i∈I∂

vi

∫
Ω

∂Rj

∂x
Ri


− (r + p)

 n∑
i=1

vi

∫
Ω

RjRi +
∑
i∈I∂

vi

∫
Ω

RjRi


+Rp

 n∑
i=1

vi

∫
Ω

RjRi +
∑
i∈I∂

vi

∫
Ω

RjRi


(5.2.5)

and

∂

∂τ

 n∑
i=1

ci

∫
Ω

RjRi +
∑
i∈I∂

ci

∫
Ω

RjRi

 = −σ
2

2

 n∑
i=1

ci

∫
Ω

∂Rj

∂x

∂Ri

∂x
+
∑
i∈I∂

ci

∫
Ω

∂Rj

∂x

∂Ri

∂x


−
(
r + pη − σ2

2

) n∑
i=1

ci

∫
Ω

∂Rj

∂x
Ri +

n∑
i∈I∂

ci

∫
Ω

∂Rj

∂x
Ri


− (r + p)

 n∑
i=1

ci

∫
Ω

RjRi +
∑
i∈I∂

ci

∫
Ω

RjRi


+ p

 n∑
i=1

γi

∫
Ω

RjRi +
∑
i∈I∂

γi

∫
Ω

RjRi


(5.2.6)

Since the complexity of the NURBS functions entails the inevitable recourse to nu-
merical integration. The actual integration of the element matrices is carried by
Gauss-Legendre quadrature rule Cottrell et al. (2009). To increase the accuracy of
the element matrices, one could increase the Gaussian points ngp, but as it was tested
for a linear European call option, a large number of Gaussian ngp are not necessary
for accuracy for integration. The standard number of quadrature points is chosen to
be ngp = p+ 1.

5.2.2 Treatment of nonlinear term by group FEM

One can proceed by addressing the pair of nonlinear penalty terms found in equation
(5.1.51) using the group finite element technique as described in the work of Fletcher
(1983) to handle the nonlinearity. In this discussion, we will focus on outlining the
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construction process for Pcall,j; the procedure for constructing the finite element ap-
proximation for Pput,j is identical. For "max" terms in (5.1.19) and (5.1.21), δ and γ,
numerical approximations were obtained by means of group finite element as in the
below-mentioned way.

Assume that the term ζcall := αcall(U − U⋆
call) is approximated by

ζcall =
n∑

i=1

ζiψi +
∑
I∂

ζiψi,

where ζcall,i = αcall(xi)(U(xi)−U⋆
call(xi)) =: αcall,i(ui−u⋆call,i). Therefore, for w = Rj,

j = 1, . . . , n, we have

Pcall,j = ρ

∫
Ω

Rj

(
n∑

i=1

ζiRi +
∑
I∂

ζiRi

)
dx = ρ

 n∑
i=1

ζi

∫
Ω

RjRidx+
∑
I∂

ζi

∫
Ω

RjRidx


= ρ

 n∑
i=1

αcall,i(ui − u⋆call,i)
∫
Ω

RjRidx+
∑
I∂

αcall,i(ui − u⋆call,i)
∫
Ω

RjRidx

 .

(5.2.7)

Integrals above generate the following element matrices: Mj, Kj, and Nj.

5.3 Time integration scheme

The system of differential-algebraic equations can now be written utilizing global
element matrices and boundary contributions:

∂

∂τ
(Mu+ b̂M,u) = −

σ2

2
Ku−

(
r + pη − σ2

2

)
Nu− (r + p)Mu+ pMδ − β1(u, v)

+ ρMPput(u
⋆
put − u) + ρMPcall(u− u⋆call) + ρbput + ρbcall := F1(u, v),

(5.3.1)
∂

∂τ
(Mv + b̂M,v) = −

σ2

2
Kv −

(
r + pη − σ2

2

)
Nv − (r + p)Mv +RpMv − β2(v) := F2(v),

(5.3.2)
∂

∂τ
(Mc+ b̂M,c) = −

σ2

2
Kc−

(
r + pη − σ2

2

)
Nc− (r + p)Mc+ pMγ − β3(v, c) := F2(v, c),

(5.3.3)
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where Pput = diag(αput,j), Pcall = diag(αcall,j), and

β1(u, v) =
σ2

2
bK,u +

(
r + pη − σ2

2

)
bN,u + (r + p)bM,u − pbM,δ, (5.3.4)

β2(v) =
σ2

2
bK,v +

(
r + pη − σ2

2

)
bN,v + (r + p)bM,v −RpbM,v, (5.3.5)

β2(v, c) =
σ2

2
bK,c +

(
r + pη − σ2

2

)
bN,c + (r + p)bM,c − pbM,γ, (5.3.6)

are the boundary condition vectors.
Time integration of the DAEs (5.3.1), (5.3.2) and (5.3.3) is carried out by applying

the θ-scheme on both equations, which results in the systems, with θ ∈ [0, 1], ∆τ =

T/nτ , and nτ the number of time steps,

Mum+1 + b̂m+1
M,u −Mum − b̂mM,u = θ∆τF1(u

m+1, vm+1) + (1− θ)∆τF1(u
m, vm),

Mvm+1 + b̂m+1
M,v −Mvm − b̂mM,v = θ∆τF2(v

m+1) + (1− θ)∆τF2(v
m),

Mcm+1 + b̂m+1
M,c −Mcm − b̂mM,c = θ∆τF3(v

m+1, cm+1) + (1− θ)∆τF2(v
m, cm),

or

A11u
m+1 − ρθ∆τM

(
Pm+1
put (u⋆,m+1

put − um+1) + Pm+1
call (um+1 − u⋆,m+1

call )
)

= Ã11u
m − θ∆τpMδm+1 − (1− θ)∆τpMδm

+ ρ(1− θ)∆τM
(
Pm
put(u

⋆,m
put − um) + Pm

call(u
m − u⋆,mcall)

)
+ θ∆τβm+1

1 + (1− θ)∆τβm
1 + b̂mM,u − b̂m+1

M,u + θρ∆τ(bm+1
put + bm+1

call )

+ (1− θ)ρ∆τ(bmput + bmcall), (5.3.7)

A22v
m+1 = Ã22v

m + θ∆τβm+1
2 + (1− θ)∆τβm

2 + b̂mM,v − b̂m+1
M,v , (5.3.8)

A33c
m+1 = Ã33v

m − θ∆τpMγm+1 − (1− θ)∆τpMγm + θ∆τβm+1
3

+ (1− θ)∆τβm
3 + b̂mM,c − b̂m+1

M,c , (5.3.9)
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where

A11 =M + θ∆τ

(
σ2

2
K +

(
r + pη − σ2

2

)
N + (r + p)M

)
,

A22 =M + θ∆τ

(
σ2

2
K +

(
r + pη − σ2

2

)
N + (r + p)M +RpM

)
A33 =M + θ∆τ

(
σ2

2
K +

(
r + pη − σ2

2

)
N + (r + p)M

)
Ã11 =M − (1− θ)∆τ

(
σ2

2
K +

(
r + pη − σ2

2

)
N + (r + p)M

)
,

Ã22 =M − (1− θ)∆τ
(
σ2

2
K +

(
r + pη − σ2

2

)
N + (r + p)M +RpM

)
,

Ã33 =M + θ∆τ

(
σ2

2
K +

(
r + pη − σ2

2

)
N + (r + p)M

)
.

Let the solutions um,vm and cm be known. The solutions at the next time level
m+1 will be computed by solving (5.3.8) for vm+1. Then cm+1 can be computed using
vm+1 solving (5.3.9), however, by imposing the constraints. The solution um+1 is then
computed via (5.3.7) using the known um, vm, and vm+1. This procedure, however,
requires knowledge of the solutions at the boundaries at the time level m+ 1.

5.3.1 Boundary solutions

At xmin, with u0(τ) := U(xmin, τ), v0(τ) := V (xmin, τ), and c0(τ) := C(xmin, τ) etc,
the boundary conditions can be written as follows:

∂u0(τ)

∂τ
= −(r + p)u0(τ)pRv0(τ),

∂v0(τ)

∂t
= −(r + (1−R)p)v0(τ),

∂c0(τ)

∂t
= −(r + p)c0(τ).

(5.3.10)

Application of the θ-scheme on (5.3.10) leads to the discrete equations:

um+1
0 + θ∆τ

(
(r + p)um+1

0 +Rpvm+1
0

)
= um0 − (1− θ)∆τ ((r + p)um0 +Rpvm0 ) ,

(5.3.11)

[1 + θ∆τ(r + (1−R)p)] vm+1
0 = [1− (1− θ)∆τ(r + (1−R)p)]vm0 ,

(5.3.12)

[1 + θ∆τ(r + p)] cm+1
0 = [1− (1− θ)∆τ(r + p)]vm0 .

(5.3.13)
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Let the boundary solution vm0 be known. Then vm+1
0 and cm+1

0 can be computed
from (5.3.12) and (5.3.13), respectively. With um0 , vm0 , and vm+1

0 , the moving bound-
aries can be solved at each time iteration as a system of equations.

5.3.2 Interior solutions

With solutions at the boundaries available at τm and τm+1, all related boundary
vectors in (5.3.7) and (5.3.8) are known. We are thus now in the position to compute
the solutions um+1, vm+1 and cm+1. vm+1 is readily computed from (5.3.8). With vm+1

known, cm+1 can be computed from (5.3.9). Then, we apply the inequality constraints
of v and c. With already adjusted vm+1 known, (5.3.7) reduces to a nonlinear function
of um+1. We assume that the penalty terms in (5.3.7) are approximated in a fully
implicit way, resulting in the equation

0 = A11u
m+1 − ρ∆τM

(
Pm+1
put (u⋆,m+1

put − um+1) + Pm+1
call (um+1 − u⋆,m+1

call )
)
− ϕ := f(um+1),

(5.3.14)

where

ϕ = Ã11u
m + Ã12v

m − A12v
m+1 + θ∆τβm+1

1 + (1− θ)∆τβm
1 + b̂mM,u − b̂m+1

M,u

+ θ∆τ(bm+1
put + bm+1

call )− θ∆τpMδm+1 − (1− θ)∆τpMδm. (5.3.15)

The nonlinear equation (5.3.14) is solved iteratively using Newton’s method.
Starting from an initial guess of the solution um+1,0, the solution um+1 is approxi-
mated using the iterands

um+1,k ← um+1,k−1 −
(
∇f(um+1,k−1)

)−1
f(um+1,k−1), k = 1, 2, . . .

where ∇f(um+1,k−1) is the Jacobian of f , given by

∇f(um+1,k−1) = A11 + ρ∆τM
(
Pm+1,k−1
call − Pm+1,k−1

put

)
. (5.3.16)

The initial guess um+1,0 is chosen such that it solves unconstrained CB PDE, which
is equivalent to solving (5.3.7) without penalty terms. We shall also use this uncon-
strained solution um+1,0 to constrain the initially computed vm+1 prior to the start
of Newton’s iterations. In the context of American-style derivatives, the convertible
bond problem refers to the stopping criteria used to terminate iteration to conserve
computational resources. As in Forsyth and Vetzal (2002), the first typical criteria
is the difference of two consecutive solution vectors ∥ um+1,k − um+1,k−1 ∥∞≤ inf,
which serves to guarantee the termination. The importance of the second criterion
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deserves attention since we are talking about gaps arising from the penalty matri-
ces. Its equivalence (i.e Pm+1,k−1

call = Pm+1,k
call ) is crucial to facilitate the convergence of

Newton’s method using the less number of iterations per time step.
The convergence and existence of the solution of Newton’s method depends on

the invertibility of the Jacobian matrix. The value of the only U is computed from
Newton’s method, therefore, the main nonlinear terms are same as in TF model.
The nonsingularity, hence the convergence of Newton’s method, is proved in Theo-
rem 4.4.1.

The procedure for computing the solutions in the interior after one θ-scheme step
is summarized in the following algorithm:

Algorithm 4 Computing the interior solutions
Input: input um, vm;
1: compute Bp(τ

m+1) and Bc(τ
m+1);

2: compute vm+1 from (5.3.8), ignoring any constraints;
3: compute γ and solve for m+1 (5.3.9);
4: apply minimum-maximum value constraints on vm+1 using m+1;
5: for k = 1, 2, . . . until convergence do
6: computef(um+1,k−1) using (5.3.14);
7: compute ∇f(um+1,k−1) using (5.3.16);
8: um+1,k ← um+1,k−1 −

(
∇f(um+1,k−1)

)−1
f(um+1,k−1);

9: if First stopping criteria OR Second stopping criteria is satisfied; then
10: break
11: end if
12: end for
13: apply constraints on vm+1 using um+1,k;
14: if τm+1 ∈ Tcoupon then
15: um+1 ← um+1 + K̂;
16: vm+1 ← vm+1 + K̂;
17: end if

5.4 Numerical results

AFV model is discretized by IGA-FEM in space, and a modified Crank-Nicolson
scheme is used for time integration. Newton-Raphson’s iterative method has been
utilized to handle the non-smooth functions raised by penalty terms at each step.
Numerical parameters for the convertible Bond problem are adopted from Ayache
et al. (2003) to make a comparison between two different methodologies. The trun-
cated domain for the simulation is chosen to be x ∈ [−6, 2]. In Figure 5.1, the first
experiment is to check the matter of stability, as it can be seen without maintaining
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a specific temporal-spatial ratio, the solution of both methods tends to be stable.
The jumps are natural for discrete coupon payments Tsiveriotis (1998), which occur
semiannually in the time direction. Using the same nE(number of elements) and nτ ,
in Figure 5.2 and 5.3, one could easily observe the similarity between all the methods,
except P2-FEM, where the number of grid points is doubled due to the specifics of
assembling process and the midpoint resulted as finer mesh on surface.

Table 5.1: Modeling and computational parameters.

Parameter Value
Time to maturity T 5 years
Conversion 0 to 5 years into k shares
Conversion ratio k 1.0
Face Value F $100
Clean call price Bc $110, from Year 3 to Year 5

(t ∈ (2, 5])
Clean put price Bp $105, during Year 3 (t = 3)
Coupon payments K $4.0
Coupon dates .5, 1.0, 1.5, ... ,5.0 (semian-

nual)
Recovery factor R 0
Hazard rate p 0.02
Partial default η 0
Total default η 1
Volatility σ 20% or 0.2
Underlying stock price at t = 0,
Sint

$100

Penalty parameter ρ 106

Newton-Raphson’s method toler-
ance tol

10−6

107



Figure 5.1: Solution of the AFV model t = 0, r = 0.05, σ = 0.2, F = $100, ρ = 106.
Left figure: nE = 27, nτ = 100, CB price by FDM; Right figure: nE = 27, nτ = 100,
CB price by P1-FEM.

Figure 5.2: Solution of the AFV model t = 0, r = 0.05, σ = 0.2, F = $100, ρ = 106.
Left figure: nE = 27, nτ = 100, CB price by P2-FEM; Right figure: nE = 27,
nτ = 100, CB price by Linear-NURBS.
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Figure 5.3: Solution of the AFV model t = 0, r = 0.05, σ = 0.2, F = $100,
ρ = 106. Left figure: nE = 27, nτ = 100, CB price by Quadratic-NURBS; Right
figure: nE = 27, nτ = 100, CB price by Cubic-NURBS.

In Figure 5.4, the comparison between above-mentioned numerical tecnhiques are
compared in the single graph, as we double the mesh size, in both experiments,
instability issue is not observed. However, the comparison clearly reveals observable
harmony among all the methods.

Figure 5.4: Solution of the AFV model t = 0, r = 0.05, σ = 0.2, F = $100, ρ = 106.
Left figure: nE = 28, nτ = 200; Right figure: nE = 29, nτ = 400.

In Table 5.2, Cubic-NURBS-based IGA-FEM is implemented to generate the price
of convertible Bonds at face value F = 100$. Once the refinement process started,
the price evolution monotonically decreased and converged to the value 124.87$, up
to two decimal places, comparable with the results of the benchmark problem Ayache
et al. (2003). However, the Peclet number Pe = 3

2
≥ 1 indicates the presence of

convection dominance in the model and is expected to observe instabilities and spu-
rious oscillations. Moreover, Cubic-NURBS yields consistent numerical results that
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exhibit monotonic evolution, ultimately converging to values obtained by other tech-
niques. It’s worth noting that in Ayache et al. (2003), the methodology part refers
to P. Forsyth’s work Forsyth and Vetzal (2002), where they handled the American
option problem using the Finite Volume Method (FVM) coupled with the nonlinear
Van-Leer Flux Limiters and the Rannacher time-stepping approach. In contrast, our
numerical experiments demonstrate that Cubic-NURBS can capture price dynamics
monotonically without relying on these stabilization and smoothing techniques. We
have to mention that the solutions produced by these methods exhibit a convergence
to the viscosity solution using lesser DOFs compared to ours.

The fitted NURBS is now considered for the AFV model, and solutions were
achieved by controlling the weights near the strike price. In reference Ayache et al.
(2003), the viscosity solution for the same problem was achieved by 800 nodes and
time steps by FVM, while the fitted NURBS obtained here has spent 32 elements
and 100 time steps, shown in Table 5.2. In Figure 5.8, we could see that the same
setting, which produced better results for linear cases, is able to deal with nonlinear
problems as well by modifying the corresponding weight for each control point as it
was described before. To be consistent with the reference solution, we experimentally
obtain the weights that produce good matching results at each refinement. To main-
tain a fair comparison among other methods, the choice of time step is fixed to be
100. The corresponding choice of weights for each level is different but still produces
the desired result. Consequently, varying weights at each level could be associated
with the error introduced in the time dimension. To overcome this issue, the weights
are needed to be adjusted. It is evident that the weights are higher for a reduced
number of nodes, but the weights tend to be smaller for a higher number of nodes.
As we keep the time step unchanged for an increasing number of nodes, the weights
are affected by making the control points less engaged. These results highlight the
efficiency of the proposed framework and its potential to deal with diverse types of
problems.
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Table 5.2: Convertible bond price based on the AFV model at t = 0 ans S = 100,
computed using cubic NURBS. The numerical parameters are given in Table 5.1

Unweighted NURBS Weighted NURBS
nE nτ FDM P1-FEM P2-FEM Uniform Nonuniform ωnon−optimal

26 50 125.1718 125.0198 124.6675 125.5205 125.2426 125.1409
27 100 125.0613 125.0557 125.0045 125.1139 125.0675 124.9433
28 200 124.9504 124.9210 124.9485 124.9676 124.9579 124.8542
29 400 124.9123 124.9000 124.9094 124.9154 124.9115 124.8120
210 800 124.8914 124.8867 124.8893 124.8895 124.8898 124.7915
211 1600 124.8805 124.8786 124.8789 124.8798 124.8795
212 3200 124.8749 124.8739 124.8745 124.8746 124.8745

Table 5.3: Convertible bond price based on the AFV model at t = 0 ans S = 100,
computed using cubic NURBS with optimal weights.

Weighted NURBS
nE nτ Nonuniform(ωadjusted) Nonuniform(ωoptimal)
26 50 124.8777 124.8745
27 100 124.6833 124.8745
28 200 124.5956 124.8745
29 400 124.5541
210 800 124.5339

Figure 5.5: Solution of the AFV model t = 0, r = 0.05, σ = 0.2, K̂ = $100. Left
figure: Non-uniform meshing with nE = 25, nτ = 100; Right figure: NURBS weights.
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Figure 5.6: Solution of the AFV model t = 0, r = 0.05, σ = 0.2, K̂ = $100. Left
figure: Non-uniform meshing with nE = 26, nτ = 100; Right figure: NURBS weights.

Figure 5.7: Solution of the AFV model t = 0, r = 0.05, σ = 0.2, K̂ = $100. Left
figure: Non-uniform meshing with nE = 27, nτ = 100; Right figure: NURBS weights.

Figure 5.8: Solution of the AFV model t = 0, r = 0.05, σ = 0.2, K̂ = $100. Left
figure: Non-uniform meshing with nE = 28, nτ = 100; Right figure: NURBS weights.
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Figure 5.9: Absolute stability region of the time integration scheme for Crank-
Nicolson method, when θ = 1/2

5.4.1 Absolute stability region

Section 2.6 gives absolute stability region details. Based on accumulated informa-
tion, one can derive the absolute stability region and check if eigenvalues meet the
region’s requirement. For the Crank-Nicolson time-stepping methods for the nonlin-
ear convertible bond pricing problem under the AFV model, we have presented the
eigenvalues in Figure 5.9, which are crucial for the determination of the absolute sta-
bility region. Moreover, one could see that for linear problems, there are no instability
issues that can be posed based on absolute stability region for the time integrator and
depicted eigenvalues that belong to the same stability range. One might observe that
the eigenvalues differ from those of the linear BS cases. This might be justified by
the nonlinearity introduced by penalty matrices, which are tridiagonal in nature. It
is important to note that based on realistic parameters of the model, such as r, h, σ,
θ, ∆τ , Bc, Bp, and ρ the eigenvalues meet the requirement of the absolute stability
region, however, using an impractical set of parameters the instability may occur.

5.5 Greeks

For practitioners, the accuracy of the Greeks can lead to more precise and beneficial
hedging and risk management scenarios Wilmott (1998), Higham (2004), Hull (2014).
In Delta, one could observe how the contract value tends to change as the underlying
asset increases. In Gamma, one could see the difference in Delta according to under-
lying asset movement. In Theta, it is possible to see how the contract value behaves
as time approaches maturity.
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A frequent problem of the Greeks, especially in nonlinear cases Forsyth and Vetzal
(2002); Yousuf et al. (2012), is that the Greeks are suffering from spikes or shocks.
This phenomenon creates trouble for hedging and controlling the risk in reality since
the behavior of the Greeks is unreliable and can not be trusted due to spikes or shocks.
Since the generated numerical solutions are weaker than exact from a mathematical
and realistic point of view since it is an approximation. Consequently, one tries to
value the Greeks claiming another sort of approximation using the already approx-
imated solutions, therefore, in some nonlinear cases it is usual and expected to see
instabilities in Greeks.

The most common practice for the computation of Greek alphabets is FDM.
Indeed, FDM serves as fast and robust computations not only for pricing problems but
also for Greeks. Since numerical results were generated by IGA-NURBS, the usage
of FDM will create another source of error as the nature of the two methodologies
is totally different. To remedy this, corresponding Greek values are calculated by
IGA-NURBS and P2-FEM for comparison. Once the solutions are generated by IGA-
NURBS, one could apply the post-processing algorithm to investigate the character
of the contract value according to variable quantities. Note that the cubic-NURBS
is at least twice differentiable, which suffices to deduce the second order Gamma.
Initially, our IGA-NURBS approximation is given as:

Uh =
n∑

i=1

uiRi,

corresponding derivatives:
∂Uh

∂x
=

n∑
i=1

ui
∂Ri

∂x

∂2Uh

∂x2
=

n∑
i=1

ui
∂2Ri

∂x2

The first step is to compute the NURBS basis functions and their derivatives at Gaus-
sian points. Secondly, we do use the above expressions to compute the corresponding
first and second-order derivatives, utilizing the same assembling process approach as
the one used for assembling the local to global element matrices.

For each particular quantity, a corresponding back-transformation shall be applied

to obtain ∆ =
∂U

∂S
and Γ =

∂2U

∂S2
. Theta Θ =

∂U

∂t
values could be computed via FDM,

however, to maintain the consistency, we retrieved its values from governing Black-
Scholes PDEs for each contract, since the numerical solution, Delta and Gamma are
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known at current stage. Note that the Greeks by P2-FEM are calculated using derived
explicit formulas in the previous work Kazbek et al. (2024).

Figure 5.10: Greeks for AFV model with t = 0, r = 0.05, σ = 0.2, F = $100. For
NURBS: nE = 2048, nτ = 2000; For P2-FEM: nE = 1000, dτ = 2000. Left figure:
Delta ∆; Right figure: Gamma Γ; Middle figure: Theta Θ.

The surface of convertible bond values in Figure 5.3 is affected by discrete coupon
payments and controlled by nonlinear term and inequality constraints. Therefore, the
surface Greek values can not physically be smoothed since discontinuous jumps and
angles can not be differentiated. Consequently, convertible Bonds in Figure 5.10 has
produced smoother Greeks only at t = 0 but not the whole Greeks surfaces. In terms
of stability, the numerical approximation tends to be more stable than the Leland
model. The results of P2-FEM and Cubic-NURBS are almost identical, without any
spikes or shocks.
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Chapter 6

Conclusions

We have developed a framework for different types of American and European options
based on FEM. The literature on PDE approaches for pricing tasks is versatile, en-
compassing various numerical methods that address specific nuances. FDM remains
the mainstay for Black-Scholes-type problems in both industry and academic circles
due to its robustness and simplicity. However, certain types of options may exhibit
high non-linearity, and achieving a certain degree of accuracy and stability may not be
possible with conventional FDM or FEM without serious modification of the original
scheme.

This work aims to create efficient FEM-based algorithms to accurately tackle
three fundamental nonlinear pricing problems encountered by financial institutions,
such as European and American-style derivatives. Indeed, the methodology could be
directly extended and applied to other types of problems, as the core engine is the
BS operator whose derivatives remain unchanged while the nonlinear components are
modified. Moreover, the treatment of various kinds of nonlinear terms is presented,
further supporting the generality of the methodology. Therefore, the implementation
strategy is based on an object-oriented approach, enabling users to apply it to various
nonlinear tasks.

6.1 European contract: Call option

The point of departure is an example of the linear Black-Scholes equation used for
pricing the European call option. For comparison, we opted to use the standard
central difference scheme on uniform grids. However, considering that a non-uniform
mesh in FDM is relatively straightforward, smooth-mapping functions are widely em-
ployed. FEM offers certain advantages over IGA in terms of rapid convergence in the
original scheme without any modifications. Provided the linear European call option
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has a closed-form solution, a set of FEM-based approaches were experimentally tested.
Additionally, Von Neumann stability analysis was conducted, providing unconditional
stability for the time integration scheme. Furthermore, the eigenvalues of the time
integration scheme fall within the absolute stability region, as determined numeri-
cally. Conventional FEM based on Lagrange polynomials demonstrates superiority
over standard NURBS basis functions with equally distributed weights. However, as
observed in the linear case, using an unstructured grid near the exercise price region
suggests better results without requiring additional grid points elsewhere in the do-
main. Naturally, B-Spline basis functions, and subsequently NURBS basis functions,
do not interpolate the interior points but do it at boundaries, whereas Lagrangian
basis functions are interpolatory across nodes. The potential of fitted NURBS is
demonstrated through unequally distributed weights, resulting in convergence twenty
times faster than that achieved by P1-P2 FEM or unfitted NURBS. However, the
concept of fitted NURBS is mathematically feasible when a closed-form solution is
present. Otherwise, particularly in highly nonlinear problems, it leads to a nonlinear
optimization problem aimed at minimizing errors through optimal weight selection.

6.2 European contract: Call option with transaction
costs by Leland

The European call option under the Leland model is considered to incorporate the
effect of transaction costs into the fair price of the contract. This model includes a
nonlinear term in the diffusion component, necessitating careful selection of spatial
and temporal grid sizes to maintain an experimentally determined upper bound. In
the literature, the model is solved using a linearization approach, wherein two con-
secutive solution vectors in time are treated as a single current vector. In order to
assess the behavior of the IGA framework, we adopt the same approach, which has
resulted in goodly matched prices. It is worth noting that the P2-FEM solution de-
viates from those obtained by P1-FEM and FDM. One possible explanation for this
phenomenon could be the presence of negative basis functions in conventional FEM,
leading to negative values in coefficient matrices. Particularly in convection-dominant
or nonconservative convection-diffusion equations, this can result in spurious oscilla-
tions, necessitating fundamental modifications to the scheme to control diffusion and
convection terms. In contrast, IGA NURBS-based technology consistently features
positive basis functions with compact support, regardless of the polynomial degree.
The accurate calculation of Greeks, which represent sensitivities of option prices to
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various factors, is of great interest, as least as the fair price of the contract itself. The
advantageous properties of NURBS technology enable us to obtain smoother Greeks
compared to those generated by P2-FEM or FDM, which has produced shocks across
the domain. Furthermore, numerical analysis reveals that the eigenvalues of the time
integration scheme fall within the absolute stability region. To the best of the au-
thor’s knowledge, this is the first instance of applying IGA technology to a nonlinear
European option pricing task.

6.3 American contract: Convertible bonds by TF
model

Pricing convertible bonds presents a formidable challenge due to their fluctuating
parameters and the variational inequalities that serve to hedge risks from both above
and below. While the TF model is a popular choice among practitioners, it has not
gained as much traction among scientific groups. Therefore, the objective of this study
is to present alternative FEM-based techniques to address this problem. P1-P2 FEM
is applied to the TF model, demonstrating superior convergence properties compared
to FDM. This is attributed to the fewer iterations required in Newton’s method, which
entails reduced computational time. As demonstrated, P2-FEM achieves accuracy in
two decimal places using a relatively smaller number of points than P1-FEM and/or
FDM. To the best of the author’s knowledge, there have not been previous FEM
solutions for the TF model and approximation results for the Greeks using FEM.
Additionally, these results are favorably compared with those obtained using FDM.

6.4 American contract: Convertible bonds by AFV
model

The assumptions of the TF model are shown to be inconsistent due to the default
strategies of the underlying asset value. Consequently, the limitations of the TF model
are addressed in the AFV model by incorporating partial and total default cases,
thereby ensuring a recovery factor in the event of default. This modification results
in a system of coupled triple PDEs and corresponding inequality constraints, which
must be applied at each iteration. To approximate the contribution of the inequality
constraints to the bond price, we adopt the approach proposed by P. Forsyth, utilizing
a nonlinear penalty term where the constraints are implicitly imposed. The system
is solved using Newton’s method for non-smooth functions at each time step. Being
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convection-dominated and nonconservative, the AFV model’s benchmark solution is
obtained using sophisticated FVM with flux limiters and Rannacher time-stepping
methods. In contrast, our approach transforms physical coordinates into log coordi-
nates to avoid variable coefficients. We then apply standard P1-P2 FEM along with
IGA NURBS. This approach maintains monotonic convergence without the need for
stabilization techniques to be used in benchmark solutions. Furthermore, using ad-
justed fitted NURBS based on reference solutions obtained with P1-P2 FEM enables
convergence with almost thirty times lesser grids than those reported in the litera-
ture. Notably, there is no prior instance in the literature of using IGA NURBS for
American-style contracts. Additionally, the fitting of NURBS is performed by opti-
mizing weights according to reference solutions. The Greeks calculated using NURBS
exhibit a close similarity to those obtained with P2-FEM.

6.5 Future work

To the best of the author’s knowledge, no analytical error analyses are available for
nonlinear Black-Scholes problems, encompassing both a priori and a posteriori error
estimates. The latter should include an adaptive grid strategy, which could enhance
computational efficiency regarding both computational time and accuracy. While a
priori error estimates are typically designed for linear problems, it is still feasible to
conduct predictive analyses that bound the error from above, indicating the order of
convergence in both time and space.

The generalization of NURBS weight parameters holds significance for a broad
class of nonlinear problems encountered in financial engineering. It is widely ac-
knowledged that computational time in numerical solutions of PDEs increases expo-
nentially with spatial dimensions. Therefore, NURBS technology can be extended
to higher-dimensional problems, such as the Heston or multi-asset models to achieve
satisfactory accuracy and fast computational time.

With recent advancements in the IGA framework, Bernstein polynomial-based
functions and T-splines are presenting the versatility of NURBS in specific tasks.
Incorporating T-splines or Bézier curves could also be explored in future research
endeavors.

Due to the computational limitations of the classical numerical approaches, es-
pecially when considering the portfolio of multiple assets, practically, it becomes
less applicable due to the slowness of the computations. After the third dimension,
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the variational methods or other discrete methods suffer from being computation-
ally inefficient in achieving convergent results. Therefore, the recent advancements
on physics-informed neural networks seems promising in dealing with higher dimen-
sional problems, thus, the important research frontier found in mathematical finance
is the treatment of the higher dimensional problem, which could also be realized in
the future.
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