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Preface

This report delves into the innovative intersection of deep learning and software
development, focusing on the automated generation of code. Chosen due to the
increasing relevance and transformative potential of AI in programming, this work
seeks to explore how deep learning can enhance and streamline the coding process.

Inspired by the challenges faced by developers in maintaining efficiency and
accuracy amidst increasing software complexity, this project was conceived to har-
ness the power of deep learning to automate and optimize the code generation
process.
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nificantly enriched my learning experience and academic journey.
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Amir Amirov
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Chapter 1

Introduction

In the burgeoning field of artificial intelligence, deep learning has emerged as a
cornerstone for an array of complex computational tasks [1]. Among these, code
generation represents a pivotal application, leveraging the capabilities of advanced
neural network architectures to automate and optimize coding processes [2]. This
report delves into the use of transformer-based models, specifically designed for
code generation, highlighting their potential to enhance efficiency and accuracy in
software development.

Transformers, introduced in the seminal paper "Attention is All You Need" by
Vaswani et al., have revolutionized various domains of machine learning [3]. These
models are characterized by their reliance on self-attention mechanisms, which
weigh the significance of different parts of the input data, allowing for more nu-
anced understanding and generation of content [4]. Our project utilizes this ar-
chitecture to specifically tailor a deep learning model for code generation. Unlike
general models that perform a broad spectrum of tasks, our focused approach aims
to refine the efficiency and output quality of generated code, serving as a testament
to the adaptability and power of specialized transformer models.

The significance of this project lies in its attempt to bridge the gap between
general-purpose models and specialized application needs. While general models
offer broad capabilities, they often lack the fine-tuned precision required for spe-
cific tasks such as code generation. By developing a model dedicated to this task,
we aim to achieve higher efficiency and effectiveness, setting a precedent for future
specialized applications of transformer technology in the field of deep learning.
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Chapter 2

Background

Initially, code generation tasks relied on recurrent neural networks (RNN) and
Long Short-Term Memory networks (LSTM). These models were capable of han-
dling sequences, making them suitable for generating code based on sequential
data inputs [5]. However, they often struggled with long-range dependencies and
computational efficiency [5]. "Long-range dependencies" refer to the requirement
of the model to remember information from early in the sequence to use much
later. For example, in language modeling, a pronoun appearing in a sentence might
refer back to a noun mentioned several sentences earlier. Capturing these depen-
dencies is crucial for understanding the context and maintaining the coherence of
the generated text or code [6]. Handling long-range dependencies is challenging
for standard RNNs due to the vanishing gradient problem, where gradients—used
in training neural networks—become very small, effectively preventing the net-
work from learning correlations between distant events in a sequence. The core
operations in LSTMs are inherently sequential. Each step in processing a sequence
depends on the completion of the previous step. This dependency limits the ability
to parallelize operations, which is a key factor in speeding up neural network com-
putations. Each LSTM unit includes multiple gates (input, forget, and output gates)
and a memory cell. Each of these gates involves matrix multiplications and non-
linear activation functions. When processing each element of a sequence, these op-
erations need to be computed, which increases the computational load compared to
simpler architectures. LSTMs require substantial memory bandwidth and storage
for parameters, previous states, and gradients during training. This can become a
bottleneck in both training and inference phases, especially for long sequences or
large models.Due to the above factors, training LSTMs can be resource-intensive
and slow. They require significant computational resources, which can be costly
and not efficient. The introduction of Transformer models marked a significant
shift in code generation research. These models use self-attention mechanisms to
weigh the influence of different words within the input data, regardless of their
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3

positional distance [3]. As a result, Transformers handle long-range dependen-
cies more effectively and offer greater parallelization, leading to faster training
times and improved performance on large datasets.Recent studies have leveraged
Transformer-based models for various code generation tasks. For example, the Al-
phaCode model by DeepMind uses an encoder-decoder Transformer architecture
to generate code for competitive programming problems, achieving significant suc-
cess rates and outperforming traditional code generation approaches [7]. Current
research has expanded to include more nuanced approaches that combine deep
learning models with other techniques to enhance code generation. For instance,
some methods now incorporate retrieval-based approaches and post-processing
steps to refine the generated code and align it more closely with human program-
ming standards. These hybrid models have shown improved performance by lever-
aging both the predictive power of neural networks and contextual understanding
from retrieval systems [8]. Despite these advancements, several challenges remain.
These include improving the generalizability of models to handle diverse program-
ming tasks, reducing the computational resources required, and enhancing the
models’ ability to understand and implement complex problem requirements. Fu-
ture research is to focus on these areas, seeking to refine deep learning techniques
and integrate them more seamlessly into practical programming environments [9].



Chapter 3

Data

In this project, three distinct datasets are used. The primary datasets employed are
the Alpaca and XLCoST datasets, with the third being a merger of the two [10] [11].
As for training data, this merger combines the training, validation, and test sets of
Alpaca with the training set of XLCoST, while exclusively adopting the validation
and test sets from XLCoST for our merged dataset.

Dataset Training Validation Test
Alpaca 10998 687 2062
XLCoST 9263 472 887
Overall 23010 472 887

Table 3.1: Composition of datasets used for training

Figure 1: Dataset examples.
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Chapter 4

Methodology

This section will describe the detailed architecture of transformer. It is also im-
portant to note that the methodology encompasses more than just the transformer
architecture; it also includes the preprocessing of data and the training process,
among other critical steps, to ensure the model’s effectiveness in generating code.

4.1 Transformer architecture

The transformer architecture is divided into two main parts: an encoder and a
decoder (see Figure 1). The encoder’s job is to read and understand the instructions
or the prompt that describes what the user wants the code to do. It breaks down
this information to make it easier for the machine to handle [12]. Encoder takes
a prompt and converts it into context-rich representation. Next, the decoder uses
this rich context, along with the sequence of the actual target output, to craft the
code. It generates the code piece by piece, one token at a time, translating the
user’s intent into a functional script. This way, the encoder sets the stage, and the
decoder brings the code to life. Nevertheless, before it some building blocks are
required to be constructed.

4.2 Building the model

The following actions are required in order to construct the Transformer model
[13].

1.Fundamental building blocks such as multi-head attention, position-wise feed-
forward networks, tokenization, positional encoding are required to be defined.

2.Construction of the Encoder part of the model.
3.Construction of the Decoder part of the model.
4.Transformer network should be formed by connecting both parts of the model.

5
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Figure 1: The architecture of the Transformer model
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4.2.1 Preprocessing

In the sphere of deep learning, preprocessing is a critical step that transforms raw
data into a clean, standardized format suitable for model training. This process is
crucial because neural networks, such as the ones used for code generation, learn
patterns from numerical representations of data [14]. Inconsistent or noisy input
can significantly impede the learning process, leading to suboptimal performance.
Therefore, the aim of preprocessing is to convert raw text into a uniform format,
stripping away variations that do not contribute to the learning objective, such as
capitalization, extraneous whitespace, or punctuation.

The preprocessing pipeline typically involves several steps: standardization,
tokenization, and numericalization [15]. Standardization ensures that the text is
consistent in case and formatting. Following this, tokenization breaks down the
standardized text into atomic elements or tokens that the model can interpret.
These tokens could be words, subwords, or characters, depending on the required
task. Finally, numericalization maps each token to a unique index that represents
it in the model’s vocabulary.

Figure 2: Diagram for self-attention.

The accompanying image exemplifies the preprocessing pipeline. It begins with
the original text, "Create a python function.", which is standardized to lowercase,
resulting in "create a python function". The text is then tokenized into individual
words: "create", "a", "python", "function". Each word is subsequently converted
into token indices, for instance, 3, 29, 95, 155, which the model uses to understand
and process the text.

In our project, we leveraged the pretrained tokenizer from the CodeLlama-
7b-Python model available on the Hugging Face platform [16]. This tokenizer is
adept at parsing and understanding Python code, designed specifically for the
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syntax and semantics of the Python language. It has been pretrained on a vast
corpus of Python code, enabling it to recognize patterns and structures inherent
to Python programming. The CodeLlama-7b-Python tokenizer simplifies the in-
tricate process of understanding programming languages, a task that traditional
natural language tokenizers are not equipped for. This specialization ensures that
our model can effectively interpret code prompts and generate syntactically and
semantically correct Python functions.

By employing such a tokenizer, we ensure that the input to our transformer
model retains the crucial characteristics necessary for code generation while omit-
ting superfluous details. This tailored preprocessing not only optimizes the train-
ing process but also enhances the model’s ability to generate accurate and func-
tional code.

4.2.2 Positional Encoding in Sequence-to-Sequence Models

In sequence-to-sequence models like transformers, understanding the order of
words in a sentence is crucial for effective processing [3]. The technique employed
to incorporate this positional information is known as "positional encoding."

Concept of Positional Encoding

The fundamental idea behind positional encoding is to enhance word embeddings
with information about the position of each word in the sequence. This is achieved
by augmenting the standard word vector with a position vector, representing the
word’s position in the sentence. The model is then expected to leverage this ad-
ditional positional information to better understand the sequential relationships
between words.

Simple Concatenation Approach

One straightforward approach is to concatenate the word’s position directly to its
embedding vector. However, this method has limitations as positions can be large
integers, potentially disrupting the range of values in the embedding vector. Large
input values are generally undesirable in neural networks.

Cosine-Based Positional Encoding

The "Attention is all you need" paper introduced a clever technique using cosine
functions to encode word positions [3]. This method involves adding a vector with
cyclically varying values in the range [-1, 1] to word embeddings.
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Positional Embedding Implementation

1 import torch

2 import torch.nn as nn

3 import math

4

5 class PositionalEncoding(nn.Module):

6 def __init__(self , d_model , max_seq_length):

7 super(PositionalEncoding , self).__init__ ()

8

9 pe = torch.zeros(max_seq_length , d_model)

10 position = torch.arange(0, max_seq_length , dtype=torch.float)

.unsqueeze (1)

11 div_term = torch.exp(torch.arange(0, d_model , 2).float () * -(

math.log (10000.0) / d_model))

12

13 pe[:, 0::2] = torch.sin(position * div_term)

14 pe[:, 1::2] = torch.cos(position * div_term)

15

16 self.register_buffer('pe', pe.unsqueeze (0))

17

18 def forward(self , x):

19 return x + self.pe[:, :x.size (1)]

Listing 4.1: PositionalEncoding Class

Mathematical Formulation

Let x be the input tensor of shape (batch_size, seq_length, d_model). The posi-
tional encoding is calculated using sinusoidal functions [3]:

PE(pos, 2i) = sin
(

pos
10000(2i/dmodel)

)

PE(pos, 2i + 1) = cos
(

pos
10000(2i/dmodel)

)
where PE(pos, 2i) and PE(pos, 2i + 1) represent the positional encoding for even
and odd indices, respectively.

Therefore, positional encoding is a technique crucial for incorporating word
order information into sequence-to-sequence models. The chosen method, posi-
tional embedding, enriches word embeddings with learned position information.
The implementation involves the addition of position embedding vectors to word
embeddings, enhancing the model’s ability to understand the sequential relation-
ships within input sequences. The provided PositionalEncoding class effectively
integrates this concept into the transformer architecture.
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4.2.3 Attention Mechanism

Multi-head attention: When reading this report, a person may be skimming and
devote more time to the more important part. The idea of a multi-attention mech-
anism is very similar to what people do. Not all information is equally useful for
the task: the model should pay more attention to some features and less attention
to other features [17] .

In the context of sequence-to-sequence models, the multi-head attention mech-
anism is an extension of the self-attention mechanism. Let’s break down the key
components and the mathematics involved.

Self-Attention

For the task of code generation, the application of attention mechanisms provides
context for model. Self-attention, in particular, allows the model to weigh the
importance of each token within a sequence, enhancing its understanding of the
syntactic and semantic structure of the code.

Self-attention is like a system that helps a word in a sentence pay attention to
other important words to better understand what it means in that specific context.
Take the sentence "Bus arrived at the station on time." If we focus on the word
"station," we might wonder what type of station it is. Is it for trains, radios, or
maybe even space, like the International Space Station? Self-attention helps figure
this out by looking at the word "station" and considering the other words around
it to get the right meaning.

The diagram is a visualization of how the self-attention mechanism in neural
networks processes the sentence "Bus arrived at the station on time." The sentence
is broken down into its individual words: ’bus,’ ’arrived,’ ’at,’ ’the,’ ’station,’ ’on,’
’time.’ Each word is represented as a token vector. These vectors are typically
generated through an embedding process that turns words into numerical rep-
resentations that capture some of their meaning. The diagram shows a matrix
where each cell represents the attention score between two words. For instance,
there’s a high attention score (0.8) between ’bus’ and ’station,’ suggesting that the
model pays more attention to how these two words are related in the context of
the sentence. This is logical since ’bus’ and ’station’ have a direct connection. The
attention scores are then scaled and normalized through a softmax function so that
they add up to 1. This makes it easier for the model to weigh the importance of
each word when considering ’station.’ Each token vector is multiplied by the atten-
tion scores to emphasize some words and de-emphasize others. This step creates
weighted token vectors, which are then used to create a context-aware representa-
tion of each word. The weighted vectors for ’station’ are summed to create a single
context-aware vector that represents ’station’ in the context of the whole sentence.
This final vector for ’station’ captures not just the meaning of the word by itself,
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Figure 3: Diagram for self-attention.

but its meaning within the sentence, reflecting the influence of related words like
’bus’ and ’arrived.’

The fundamental operation in this context is the scaled dot-product self-attention,
expressed as SAd

V,K,Q(X̃i), which maps an input sequence into an output space with
refined representations [18]:

SAd
V,K,Q(X̃i) = VX̃i · softmax

(
X̃T

i KTQX̃i√
dk

)
(4.1)

Here, V, K, and Q are the learnable projection matrices specific to the domain
of code synthesis. dk represents the dimension of the key/query vectors, which is
tuned during the training process to encapsulate the complexity of the code tokens.
The output is a set of context vectors, which capture the intricate dependencies
within the code.

Multi-Head Attention

Extending the concept of self-attention, multi-head self-attention allows the model
to concurrently process the information through different representation subspaces
at different positions [3]. Now, in multi-head attention, this process is performed
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multiple times in parallel, each with a separate set of learnable projections for Q,
K, and V. Each set of projections is often referred to as a “head.” Let’s denote the
number of heads as h.

Figure 4: Diagram for Multi-Head Attention mechanism.

The diagram you see is a depiction of a Multi-Head Attention mechanism, an
essential part of Transformer neural network models. It starts with the input data,
which, in our case, is numerical version of prompt. This data goes through several
linear layers that transform it into three distinct formats: Queries, Keys, and Values.
These transformations are crucial because they prepare the input for the attention
process, allowing the model to handle different parts of the data in separate ways.

The heart of the system is the Scaled Dot Product Attention. It computes atten-
tion scores by comparing Queries and Keys, determining how much focus should
be placed on each part of the input for every Value. Scaling is a technique used
here to prevent issues during training that could slow down learning.

A unique feature of this mechanism is the multiple ’heads’ in the Multi-Head
Attention block. Each head attends to different parts of the input, enabling the
model to consider various pieces of information simultaneously. It’s like having
several different models looking at the same problem from different angles, all at
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once.
After each head has analyzed the data, their outputs are merged through con-

catenation. This step is essential because it brings together the diverse perspec-
tives captured by each head. Finally, another linear layer is used for compatibility
purposes. This composite output is then ready for further processing within the
model.

This parallel processing is mathematically denoted as [18]:

MHSAdh(X̃i) = W
[
SAd

V1,K1,Q1
(X̃i)

T, . . . , SAd
Vh,Kh,Qh

(X̃T
i )
]T

(4.2)

W is another learnable matrix that integrates the information from multiple
self-attention mechanisms, each one providing a unique perspective on the input
code sequence. h denotes the number of distinct attention mechanisms, or heads,
and dh specifies the dimensionality of the output feature space of the multi-head
self-attention operation. Through these mechanisms, the model can generate a
more nuanced and comprehensive representation of code, which is essential for
accurately generating new code segments.

Projection

For each head i (i = 1, 2, . . . , H), the input X is projected into three spaces: Qi, Ki,
and Vi. These projections are achieved by learned linear transformations (linear
dense layers shown in Figure 4):

Qi = XWQi,

Ki = XWKi,

Vi = XWVi,

where WQi, WKi, and WVi are the weight matrices for the i-th head.

Interpretation

• Learnability: The presence of learnable dense projections (WQi, WKi, WVi)
enables the model to capture complex patterns and dependencies in the data
or find those attention score shown earlier (see Figure 3).

• Independence of Heads: Each head specializes in different aspects of the
input, allowing the model to attend to different patterns simultaneously. This
can be especially beneficial for capturing diverse features in the data.

Multi-Head Attention Implementation in PyTorch

Here is the implementation of the MultiHeadAttention class in PyTorch:



14 Chapter 4. Methodology

1

2 class MultiHeadAttention(nn.Module):

3 def __init__(self , d_model , num_heads):

4 super(MultiHeadAttention , self).__init__ ()

5 # Ensure that the model dimension (d_model) is divisible by the

number of heads

6 assert d_model % num_heads == 0, "d_model must be divisible by

num_heads"

7

8 # Initialize dimensions

9 self.d_model = d_model # Model's dimension

10 self.num_heads = num_heads # Number of attention heads

11 self.d_k = d_model // num_heads # Dimension of each head's key ,

query , and value

12

13 # Linear layers for transforming inputs

14 self.W_q = nn.Linear(d_model , d_model) # Query transformation

15 self.W_k = nn.Linear(d_model , d_model) # Key transformation

16 self.W_v = nn.Linear(d_model , d_model) # Value transformation

17 self.W_o = nn.Linear(d_model , d_model) # Output transformation

18

19 def scaled_dot_product_attention(self , Q, K, V, mask=None):

20 # Calculate attention scores

21 attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(

self.d_k)

22

23 # Apply mask if provided (useful for preventing attention to

certain parts like padding)

24 if mask is not None:

25 attn_scores = attn_scores.masked_fill(mask == 0, -1e9)

26

27 # Softmax is applied to obtain attention probabilities

28 attn_probs = torch.softmax(attn_scores , dim=-1)

29

30 # Multiply by values to obtain the final output

31 output = torch.matmul(attn_probs , V)

32 return output

33

34 def split_heads(self , x):

35 # Reshape the input to have num_heads for multi -head attention

36 batch_size , seq_length , d_model = x.size()

37 return x.view(batch_size , seq_length , self.num_heads , self.d_k)

.transpose (1, 2)

38

39 def combine_heads(self , x):

40 # Combine the multiple heads back to original shape

41 batch_size , _, seq_length , d_k = x.size()
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42 return x.transpose(1, 2).contiguous ().view(batch_size ,

seq_length , self.d_model)

43

44 def forward(self , Q, K, V, mask=None):

45 # Apply linear transformations and split heads

46 Q = self.split_heads(self.W_q(Q))

47 K = self.split_heads(self.W_k(K))

48 V = self.split_heads(self.W_v(V))

49

50 # Perform scaled dot -product attention

51 attn_output = self.scaled_dot_product_attention(Q, K, V, mask)

52

53 # Combine heads and apply output transformation

54 output = self.W_o(self.combine_heads(attn_output))

55 return output

Listing 4.2: MultiHeadAttention Class

The multi-head attention mechanism enhances the expressive power of the
model, enabling it to learn intricate relationships within the sequences it processes.

4.2.4 Residual connection and normalization

The multi-head attention mechanism transforms these embeddings in a way that
incorporates contextual information from other tokens in the sequence. The trans-
formed embeddings (the output of the attention mechanism) are then added to
the original embeddings. This step is the residual connection or identity skip-
connection. Residual connection is generally good practice but with good normal-
ization. The addition allows the gradients to flow more easily through the network
during training (helping to prevent the vanishing gradient problem), and normal-
ization helps to stabilize the learning process.

Identity skip-connection mathematically represented as [18]:

SKP(LAY(Y)) = Y + LAY(Y)

where LAY(Y) denotes the layer operation on the input matrix Y ∈ Ra×b, and
SKP(LAY(Y)) : Ra×b → Ra×b denotes the skip connection operation.

Layer Normalization (LN) comes into play subsequent to the residual connec-
tion.

After a multi-head self-attention operation (MHSA), the Transformer applies
these principles as follows [18]:

Xi = LN(SKP(MHSA(X̂i)));

This equation demonstrates how the output of the MHSA is first regulated by
the skip connection and then normalized. The LN thus acts as a form of feature
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scaling, standardizing the input’s feature space to facilitate smoother and more
stable gradient descent during model training.

These techniques are not only intrinsic to maintaining training stability but also
serve to enhance the model’s ability to generalize from the data it is trained on,
thus improving overall performance.

4.2.5 Position-Wise Feed-Forward Networks

After the application of the multi-head attention mechanism, the next crucial com-
ponent in the sequence-to-sequence model is the Position-Wise Feed-Forward Net-
works. These networks play a crucial role in further processing the information
obtained through attention mechanisms, contributing to the overall effectiveness
of the transformer architecture.

In Transformer model architectures, the encoder and decoder encompasses a
distinct substructure called the position-wise fully connected feed-forward net-
work. This design is imperative for individually and concurrently processing each
sequence position. Represented by a matrix Y ∈ Ra×b, this structure embodies the
sequence information.

Given input Y, the position-wise feed-forward network applies a transforma-
tion expressed as FFN(s)(Y), functioning independently on each vector yk (with k
spanning from 1 to b, representing the columns of Y) [18]:

FFN(s)(Y) = [g(y1), . . . , g(yb)],

where each g(yk) is defined by [18]:

g(yk) = W2σ(W1yk + b1) + b2,

In this context, σ(·) represents an activation function such as ReLU, and W1 ∈
Rr×a, W2 ∈ Rs×r, b1 ∈ Rr×1, and b2 ∈ Rs×1 are the trainable parameters of the
network. Here, r is a tuning hyperparameter indicating the internal layer dimen-
sionality.

The superscript s in FFN(s)(Y) emphasizes the output vector size, aligned with
the dimensionality. In the encoder segment of the Transformer, the feed-forward
network yields an output Oi for each respective input Xi, formalized as [18]:

Oi = LN(SKP(FFN(c)(Xi))).

This formulation integrates skip-connections (denoted by SKP) as a core el-
ement, as described in equation (17). These connections play a crucial role in
the architecture, promoting information retention across layers and mitigating the
vanishing gradient issue by allowing direct input progression to subsequent layers.
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The utilization of layer normalization (LN) concurrently normalizes the activations,
aiding in maintaining consistent training behavior.

Crucial to the Transformer’s efficacy, these feed-forward networks facilitate the
parallel treatment of sequence data. When amalgamated with the attention mech-
anism, they furnish a powerful framework suitable for complex tasks like deep
learning-based code generation. The process culminates in a classification layer,
equipped with a softmax activation, that distributes probabilities across different
potential classes.

PositionWiseFeedForward Class

1 import torch.nn as nn

2

3 class PositionWiseFeedForward(nn.Module):

4 def __init__(self , d_model , d_ff):

5 super(PositionWiseFeedForward , self).__init__ ()

6 self.fc1 = nn.Linear(d_model , d_ff)

7 self.fc2 = nn.Linear(d_ff , d_model)

8 self.relu = nn.ReLU()

9

10 def forward(self , x):

11 return self.fc2(self.relu(self.fc1(x)))

Listing 4.3: PositionWiseFeedForward Class

Thus, the PositionWiseFeedForward class encapsulates a position-wise feed-
forward neural network, incorporating two linear layers with a rectified linear unit
(ReLU) activation function in between. This network is applied independently
to each position in the input sequence within the context of transformer mod-
els. It serves as a crucial component for post-processing the information obtained
through attention mechanisms, enhancing the model’s ability to capture intricate
patterns in the data.

4.2.6 Construction of Encoder and Decoder

With our foundational components in place, including Multi-Head Attention, Position-
wise Feed-Forward Networks, and Positional Encoding, we can now proceed to
construct the encoder for our sequence-to-sequence model (see Figure 5). The en-
coder is a critical element in the transformer architecture, responsible for process-
ing input sequences and capturing meaningful representations. Let’s delve into
the construction details.
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Figure 5: The architecture of the Transformer model
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Encoder Architecture Overview

The encoder in our transformer architecture serves as the initial processing unit
for code generation. Designed with a series of six stacked layers, meaning that
we have 6 encoders. Each possessing a feature size of 128, it is finely attuned to
comprehend and contextualize the preprocessed input. At the heart of each layer
lies a multi-head attention mechanism, with 8 distinct attention heads working
together to thoroughly examine and identify interdependencies in the input data.
This intricate system allows the encoder to craft a multi-dimensional representation
of the code prompt, which encapsulates both the explicit instructions and implicit
coding patterns.

Following the attention process, each layer employs a position-wise feed-forward
network with a dimensionality of 1024. This network further processes the infor-
mation, enabling the model to grasp complex coding constructs. Residual con-
nections around these networks, along with subsequent layer normalization, pre-
serve and enhance information flow, ensuring that even subtle syntactic nuances
are retained throughout the processing stages. Additionally, dropout is utilized to
prevent overfitting by randomly dropping some connections during training. The
encoder ensures a rich and consistent representation, setting a strong foundation
for the decoder to generate precise and efficient code.

Implementation of EncoderLayer

1 import torch.nn as nn

2

3 class EncoderLayer(nn.Module):

4 def __init__(self , d_model , num_heads , d_ff , dropout):

5 super(EncoderLayer , self).__init__ ()

6 self.self_attn = MultiHeadAttention(d_model , num_heads)

7 self.feed_forward = PositionWiseFeedForward(d_model , d_ff)

8 self.norm1 = nn.LayerNorm(d_model)

9 self.norm2 = nn.LayerNorm(d_model)

10 self.dropout = nn.Dropout(dropout)

11

12 def forward(self , x, mask):

13 attn_output = self.self_attn(x, x, x, mask)

14 x = self.norm1(x + self.dropout(attn_output))

15 ff_output = self.feed_forward(x)

16 x = self.norm2(x + self.dropout(ff_output))

17 return x

Listing 4.4: EncoderLayer Class
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Flow

1. Self-Attention: attn_output = self_attn(x, x, x, mask)

2. Addition and Normalization: x = norm1(x + dropout(attn_output))

3. Position-wise Feed-Forward: ff_output = feed_forward(x)

4. Addition and Normalization: x = norm2(x + dropout(ff_output))

In summary, the construction of the encoder involves stacking multiple lay-
ers, each containing a self-attention mechanism and a position-wise feed-forward
network. These components work in tandem to capture hierarchical and position-
aware representations of the input sequence. The provided EncoderLayer class
encapsulates this architecture, allowing for flexible and effective encoding of se-
quential data in our transformer model.

Construction of Decoder

With the foundational components of Multi-Head Attention, Position-wise Feed-
Forward Networks, and Positional Encoding, we are equipped to construct the
decoder for our sequence-to-sequence model. The decoder plays a pivotal role in
generating target sequences by attending to the encoder’s output. Let’s explore the
construction details based on your code and transformer architecture principles.

Decoder Architecture Overview

The decoder in our model is composed of 6 layers, meaning there are 6 decoder
models. With each layer designed to handle a feature size of 256 for the inputs. Like
the encoder, the decoder is equipped with 8 attention heads, ensuring a meticulous
cross-referencing of the context provided by the encoder’s output. This layered
structure is key for the model to incrementally build up the final output, which
is the code itself. The decoder in a transformer takes the context-rich information
from the encoder and begins the task of generating the output, one token at a
time. It learns to predict the next element in the sequence by analyzing the target’s
previous elements and the contextual information provided by the encoder. This
approach is known as teacher forcing.

Teaching forcing is a training strategy for sequence generation models, includ-
ing our decoder in the transformer architecture. This technique involves using the
actual output from the previous time step as an input to the model during the next
step, rather than using the model’s own prediction. The rationale behind teacher
forcing is to accelerate and stabilize training by guiding the model with the cor-
rect sequence, especially in the early stages when the model’s predictions can be
largely inaccurate. To prevent the model from ’peeking’ ahead, which could lead
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to cheating, we employ an additional attention mechanism within the decoder.
This mechanism is specifically designed to mask future tokens in the sequence.
By doing so, the model is constrained to use only the information of the preced-
ing tokens and the current context to predict the next token, thus emulating the
actual conditions under which it will generate code during inference. The model
configuration reflects these design choices, with a feature size of 128 for encoder
inputs and 256 for decoder inputs, ensuring that the representations are sufficiently
detailed for complex code generation tasks. The inclusion of eight attention heads
allows the decoder to pay detailed attention to different parts of the input sequence
simultaneously. Moreover, each layer contains a feed-forward network with a di-
mensionality of 1024, providing the necessary computational space to process and
generate intricate coding patterns.

Looking at the example provided, let’s see how teaching forcing works. You
provide the model with an input sequence. In the Figure 6, the input sequence
is the text "Create a function to add two numbers." The encoder processes the
entire input sequence and creates a context vector (or a set of vectors), which is a
representation of the input. The training begins with a start token (usually denoted
as [start] or something similar). This signals the decoder to start generating the
output. Instead of using the decoder’s previous output as the next input (which
would be the case in inference), forced teaching uses the correct next token from
the training dataset. In your image, even though the decoder just outputted "def",
the next input token is the correct next piece of the code add_numbers(a, b):

which is provided externally. This process continues one token at a time, with the
decoder being ’forced’ to predict the next token with the correct previous token
always being provided. This way, the model is trained to predict the next token in
the sequence given the correct history of tokens.

During the inference phase, the process is similar, but the decoder no longer
has access to the target sequence. It must generate the code solely based on the
encoder’s output and what it has produced sequentially. Starting with a token
indicating the start of generation, it continues to predict subsequent tokens until it
reaches a point where it predicts an end token, signaling the completion of code
generation. This sequential and masked approach enables the model to generate
code independently, reflecting the learned patterns from the training phase without
any external guidance.

Implementation of DecoderLayer

1 import torch.nn as nn

2

3 class DecoderLayer(nn.Module):

4 def __init__(self , d_model , num_heads , d_ff , dropout):

5 super(DecoderLayer , self).__init__ ()
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Figure 6: The decoder part of the Transformer model

6 self.self_attn = MultiHeadAttention(d_model , num_heads)

7 self.cross_attn = MultiHeadAttention(d_model , num_heads)

8 self.feed_forward = PositionWiseFeedForward(d_model , d_ff)

9 self.norm1 = nn.LayerNorm(d_model)

10 self.norm2 = nn.LayerNorm(d_model)

11 self.norm3 = nn.LayerNorm(d_model)

12 self.dropout = nn.Dropout(dropout)

13

14 def forward(self , x, enc_output , src_mask , tgt_mask):

15 attn_output = self.self_attn(x, x, x, tgt_mask)

16 x = self.norm1(x + self.dropout(attn_output))

17 attn_output = self.cross_attn(x, enc_output , enc_output ,

src_mask)

18 x = self.norm2(x + self.dropout(attn_output))

19 ff_output = self.feed_forward(x)

20 x = self.norm3(x + self.dropout(ff_output))

21 return x

Listing 4.5: DecoderLayer Class
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Flow

1. Masked Self-Attention: attn_output = self_attn(x, x, x, tgt_mask)

2. Addition and Normalization: x = norm1(x + dropout(attn_output))

3. Cross-Attention: attn_output = cross_attn(x, enc_output, enc_output, src_mask)

4. Addition and Normalization: x = norm2(x + dropout(attn_output))

5. Position-wise Feed-Forward: ff_output = feed_forward(x)

6. Addition and Normalization: x = norm3(x + dropout(ff_output))

Hence, the decoder is constructed by stacking multiple layers, each contain-
ing masked self-attention, cross-attention, and position-wise feed-forward mech-
anisms. These components collectively allow the decoder to generate target se-
quences based on the learned representations from the encoder. The provided
DecoderLayer class encapsulates this architecture, facilitating the effective decod-
ing of sequences in our transformer model.

Transformer Network: Connecting the Encoder and Decoder Parts

The Transformer network provides the seamless connection between the Encoder
and Decoder, defining a forward pass that transforms source and target sequences
into meaningful output predictions. This section details the essential steps of this
process.

Input Embedding and Positional Encoding

It begins with the embedding of source and target sequences using dedicated em-
bedding layers. These embedded sequences are then enriched with positional en-
codings, providing vital information about the position and order of tokens within
the sequences.

Encoder Layers

The source sequence undergoes a transformative process as it traverses through
the Encoder Layers. These layers collectively process the source sequence, with the
final output representing a distilled and refined representation of the input.
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Decoder Layers

Simultaneously, the target sequence, along with the encoder’s output, navigates
through the Decoder Layers. This collaborative journey results in the generation
of the decoder’s output, capturing the intricate dependencies within the target
sequence.

Final Layer

The decoder’s output undergoes further refinement through a Final Linear Layer,
a fully connected layer that maps the output to the target vocabulary size. This
step is needed for compatibility purposes.

Output

The final output is encapsulated in a tensor, representing the model’s predictions
for the target sequence. This tensor carries the distilled knowledge and insights
gained from the input sequences.

Code Implementation

1 class Transformer(nn.Module):

2 def __init__(self , src_vocab_size , tgt_vocab_size , d_model ,

num_heads , num_layers , d_ff , max_seq_length , dropout):

3 super(Transformer , self).__init__ ()

4 self.encoder_embedding = nn.Embedding(src_vocab_size , d_model)

5 self.decoder_embedding = nn.Embedding(tgt_vocab_size , d_model)

6 self.positional_encoding = PositionalEncoding(d_model ,

max_seq_length)

7

8 self.encoder_layers = nn.ModuleList ([ EncoderLayer(d_model ,

num_heads , d_ff , dropout) for _ in range(num_layers)])

9 self.decoder_layers = nn.ModuleList ([ DecoderLayer(d_model ,

num_heads , d_ff , dropout) for _ in range(num_layers)])

10

11 self.fc = nn.Linear(d_model , tgt_vocab_size)

12 self.dropout = nn.Dropout(dropout)

13

14 def generate_mask(self , src , tgt):

15 src_mask = (src != 0).unsqueeze (1).unsqueeze (2)

16 tgt_mask = (tgt != 0).unsqueeze (1).unsqueeze (3)

17 seq_length = tgt.size (1)

18 nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length ,

seq_length), diagonal =1)).bool()

19 tgt_mask = tgt_mask & nopeak_mask
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20 return src_mask , tgt_mask

21

22 def forward(self , src , tgt):

23 src_mask , tgt_mask = self.generate_mask(src , tgt)

24 src_embedded = self.dropout(self.positional_encoding(self.

encoder_embedding(src)))

25 tgt_embedded = self.dropout(self.positional_encoding(self.

decoder_embedding(tgt)))

26

27 enc_output = src_embedded

28 for enc_layer in self.encoder_layers:

29 enc_output = enc_layer(enc_output , src_mask)

30

31 dec_output = tgt_embedded

32 for dec_layer in self.decoder_layers:

33 dec_output = dec_layer(dec_output , enc_output , src_mask ,

tgt_mask)

34

35 output = self.fc(dec_output)

36 return output

Listing 4.6: Transformer Class Implementation

4.2.7 Training the Transformer Model

Training the Transformer model involves choices for the loss function, optimizer,
and evaluation metric. Each plays a crucial role in shaping the model’s perfor-
mance. Let’s delve into the specifics of the loss function, optimizer, and the met-
rics.

Loss Function: Cross-Entropy Loss

The Cross-Entropy Loss, also known as log loss, is a widely employed loss function
for classification tasks, including sequence-to-sequence models[19]. Mathemati-
cally, it measures the dissimilarity between the predicted probability distribution
and the true distribution of the target sequence. In the context of the Transformer
model, the Cross-Entropy Loss is particularly adept at quantifying the disparity
between predicted and actual token distributions.

The formula for the Cross-Entropy Loss is given by [20]:

Cross-Entropy Loss = − 1
N

N

∑
i=1

C

∑
j=1

yij log(pij)
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Here,

N : number of training instances,

C : number of classes (vocabulary size),

yij : indicator function,

pij : predicted probability.

Optimizer: Adam

The Adam optimizer, an adaptive learning rate optimization algorithm, combines
the strengths of both the AdaGrad and RMSProp algorithms [21]. Its adaptive
nature enables it to dynamically adjust the learning rate for each parameter during
training.

Mathematically, the update rule for the Adam optimizer is given by [21]:

mt = β1 · mt−1 + (1 − β1) · gt

vt = β2 · vt−1 + (1 − β2) · g2
t

θt = θt−1 −
α · mt√
vt + ϵ

Here, α is the learning rate, β1 and β2 are smoothing parameters, mt and vt are
moments of the gradients, gt is the gradient, θt is the parameter being updated,
and ϵ is a small constant to prevent division by zero.

Evaluation Metrics for Model Performance

Evaluating the performance of machine learning models in natural language pro-
cessing (NLP) and code generation tasks requires precise and appropriate met-
rics. These metrics enable a quantifiable comparison of machine-generated out-
puts against human or ideal references. In this project, we employ BLEU scores
and CodeBERTScore as our primary evaluation tools. These metrics are selected
for their relevance to the respective fields of text and code generation and their
ability to provide insights into the quality of the generated outputs.

BLEU Scores

Description:
BLEU (Bilingual Evaluation Understudy) is a metric originally designed to evaluate
the quality of text translated by machine to another language against one or more
human-produced reference translations [22]. It is also extensively used in other
text generation tasks. BLEU measures the correspondence between a machine’s
output and that of a human at the level of word n-grams, providing a score from 0
to 1, where 1 is a perfect match with the reference.
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Mathematical Formula:
The BLEU score for a machine translation is calculated as follows [22]:

BLEU = BP · exp

(
N

∑
n=1

wn log pn

)

Where:

• pn is the precision of n-grams, calculated as the ratio of the number of n-
gram matches between the machine output and reference to the total number
of n-grams in the machine output.

• wn are weights assigned to each n-gram size (usually uniform).

• BP (brevity penalty) penalizes short machine outputs and is defined as:

BP =

1 if c > r

e(1−r/c) if c ≤ r

Here, c is the length of the candidate translation and r is the effective refer-
ence corpus length.

Justification for Choice:
BLEU scores are chosen due to their widespread acceptance and usage in the eval-
uation of text generation tasks, including translation and content creation. Their
quantitative nature allows for straightforward comparison across different models
and benchmarks.

Example of How It Works:
For instance, consider a machine-generated sentence “The black cat sat on the
mat.” and a reference sentence “A black cat was sitting on the mat.” The BLEU
score would quantify the overlap in n-grams (e.g., bigrams like “black cat”, “on
the”) between these two sentences to provide a measure of quality.

CodeBERTScore

Description:
CodeBERTScore is an innovative metric designed for assessing code generation
tasks. It builds upon the concept of BERTScore, incorporating the encoding of
both the generated code and the natural language input, thus ensuring the con-
sistency between the generated code and its context. The evaluation performed
across multiple programming languages demonstrates CodeBERTScore’s superior
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correlation with human preferences and functional correctness of the generated
code [23].

Mathematical Formulation:
Precision P and Recall R for CodeBERTScore are derived as follows [23]:

P =
1∣∣ygen
∣∣ ∑

j∈ygen

max
i∈yref

sim(yrefi , ygenj
)

R =
1

|yref| ∑
i∈yref

max
j∈ygen

sim(yrefi , ygenj
)

The F1 and F3 scores are then computed to balance precision and recall, empha-
sizing recall more heavily in F3:

F1 =
2 · P · R
P + R

F3 =
10 · P · R
9 · P + R

Here, yref and ygen represent tokens from the reference and generated code, respec-
tively, and sim denotes the cosine similarity between their embeddings produced
by CodeBERT [23].

Justification for Choice:
This metric is favored due to its enhanced capability to recognize the quality of
code beyond mere lexical similarity, capturing semantic equivalence even when
lexical forms differ. The higher correlation with human judgment ratifies its effi-
cacy in practical applications where functional accuracy is paramount.

Example of How It Works:
If a machine generates a code snippet int add(int a, int b) {return a+b;} and
the reference code is int add(int x, int y) {return x+y;}, CodeBERTScore would
analyze the semantic similarity of these snippets beyond mere lexical matching,
evaluating whether variables and operations align semantically.

These metrics, BLEU scores and CodeBERTScore, therefore, provide a robust
framework for evaluating the performance of our models, ensuring both the fi-
delity and the utility of the generated outputs in real-world applications.

Model Training Mode and Loop
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1 # Model Training Mode

2 transformer.train()

3

4 # Training Loop

5 for epoch in range (100):

6 optimizer.zero_grad ()

7 output = transformer(src_data , tgt_data[:, :-1])

8 loss = criterion(output.contiguous ().view(-1, tgt_vocab_size)

, tgt_data[:, 1:]. contiguous ().view(-1))

9 loss.backward ()

10 optimizer.step()

11 print(f"Epoch: {epoch +1}, Loss: {loss.item()}")

Monitoring Progress

The training progress is monitored through the printing of the epoch number and
loss value for each epoch Lightning Module.
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Results and Discussions

5.1 Results

Inference:

1 Prompt:

2 Program to find value of f(n) = k+2+k+3+k+...+n, k=1

3 Find the value of pow (i, 4)

4 and then add it to the sum;

5 Return the sum;

6

7 Generated code:

8 def sumOfSeries(n):

9 sum = 0

10 for i in range(1, n+1):

11 sum += (i*k)

12 return sum

13 def sumOfSeries(n):

14 sum = 0

15 sum = 0

16

17 if __name__ == "__main__":

18 K=1

19 print(sumOfSeries(sumOfSeries(n)))

Listing 5.1: Sample code generated by the model in response to a prompt

The model exhibits proficiency in understanding the prompt and translating
it into a syntactically correct Python function. As shown in the generated code,
the model successfully defines a function sumOfSeries that computes the sum of a
series according to the given mathematical formula.

However, upon closer examination of the generated code, we observe a dis-
crepancy in the quality of output between different parts of the code. The first part

30
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of the generated code accurately follows the prompt by initiating a sum to zero
and implementing a loop that computes the series’ sum. The logic encapsulated
here demonstrates the model’s capability to adhere to the structured sequence of
operations needed to solve the problem.

In contrast, the second part of the code, although syntactically correct, repeats
the function definition and contains redundant statements which do not align with
Pythonic practices or the original prompt’s requirements. Furthermore, the final
print statement attempts to pass the function sumOfSeries as an argument to itself,
which reflects a misunderstanding of the function’s purpose and indicates a clear
divergence from the expected logic.

This qualitative assessment raises important points about the model’s current
limitations. While it is capable of generating coherent and relevant code segments,
it can sometimes produce redundant or even erroneous sequences. Such obser-
vations underscore the necessity of further refining the model’s capabilities, espe-
cially in terms of code understanding and logical consistency within larger blocks
of code.

Model BLEU F1 F3 Precision Recall
XLCoST 15.09 0.76 0.74 0.78 0.75
Alpaca 3.54 0.72 0.72 0.72 0.72
Merged 10.87 0.70 0.69 0.72 0.68

Table 5.1: Model Performance Evaluation Metrics

The primary metric for evaluating the quality of machine-generated code in
comparison to source code was the BLEU score, complemented by the Code-
BERTScore. Despite BLEU being traditionally used for such assessments, its re-
liance on n-gram matching can lead to lower scores even when variable names or
syntax vary but functional correctness is retained. For the model results presented
(see Table 1), the BLEU score suggests a moderate level of similarity to reference
implementations, with XLCoST at 15.09 and Alpaca at 3.54 out of a possible 100.
This reflects the stringent nature of the BLEU metric, which may not fully capture
semantic correctness or human preference in code generation tasks.

In contrast, the CodeBERTScore presents a nuanced picture. Designed to eval-
uate code by considering the consistency between the generated code and its given
natural language context, CodeBERTScore was found to correlate better with hu-
man preferences and functional correctness of generated code than BLEU and other
existing metrics [23]. This indicates that CodeBERTScore could provide a more
accurate assessment of a model’s ability to produce functionally valid and human-
like code.
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5.2 Discussions

The relatively low BLEU scores, when considered in isolation, might be misleading
[23]. In the domain of code generation, a BLEU score that may be considered low
in machine translation can still signify a reasonable level of functional correctness.
For example, the XLCoST model’s BLEU score of 15.09, while modest, does not
necessarily indicate poor performance. For comparison, large language models
like GPT-3 have demonstrated BLEU scores of 35.6 [24]. It is essential to contextu-
alize these scores within the domain-specific challenges of code generation, where
different implementations can achieve the same functionality.

Moreover, the paper by Zhou et al. (2023) on CodeBERTScore provides valuable
insights into the limitations of BLEU for code evaluation [23]. While BLEU focuses
on exact lexical matches, which is insufficient for assessing the diversity in code
implementation, CodeBERTScore accommodates the variability in naming conven-
tions and coding styles, thus being more aligned with the practical requirements
of code evaluation.

The XLCoST model’s performance, though lower in BLEU of 15.09, may still be
competent in terms of human preferences and functional correctness.

In conclusion, while BLEU offers a foundational measure of text generation
accuracy, CodeBERTScore provides a more comprehensive evaluation framework,
particularly suited to the domain of code generation [25]. Future work and model
assessments could benefit from incorporating both metrics, with a greater em-
phasis on CodeBERTScore for insights into functional and human-aligned code
generation capabilities.
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Conclusion

The results of our research affirm the capability of the designed deep learning
model to generate code effectively. Despite achieving a relatively low BLEU score
of 15.09, 2.51, 10.87 for three datasets, the significance of this metric must be con-
sidered in context. The BLEU score, commonly used as a standard measure for
comparing machine-generated text to human-written references, may not always
reflect the true semantic and functional accuracy of generated code. For instance,
GPT models, known for their robust performance, typically achieve a BLEU score
of around 35.6, suggesting that even high-performing models do not reach perfect
scores, thus questioning the reliability of BLEU in evaluating code generation [24].
In contrast, CodeBERTScore, a more recent metric developed specifically for code
evaluation, offers a more nuanced assessment by considering semantic similarity
and the functional role of variables in the code. Our results, which demonstrated a
much higher CodeBERTScore, affirm that this metric correlates more strongly with
human preferences and the functional correctness of the code . This correlation is
pivotal as it aligns more closely with the practical requirements of code generation,
where the ability of the code to perform its intended function is more critical than
syntactic exactness. The quantitative measures from our evaluation highlight this
distinction: while the BLEU score was modest, the CodeBERTScore was signifi-
cantly higher, reflecting a deeper alignment with the intended functionality and
readability of the code as evaluated by human standards. These findings justify
our confidence in the model’s output, underscoring its effectiveness and efficiency
in generating usable code. However, the findings suggest that while the model
shows promise, it may benefit from additional fine-tuning, particularly in parsing
complex nested operations and maintaining context throughout longer stretches
of code. This will ensure that each part of the generated code not only stands
correct independently but also contributes correctly to the overall functionality as
intended by the input prompt. For future research, one promising direction would
be the integration of more advanced architectures such as GPT-2 or its succes-

33



34 Chapter 6. Conclusion

sors as the decoder component in the model. This could potentially enhance the
model’s understanding and generation capabilities, leading to even higher quality
code output. Our results lay a solid foundation for this exploration, suggesting
that such advancements could further elevate the performance and utility of code
generation models.
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